Spaces:
Runtime error
Runtime error
| # Copyright (c) 2022 Yifan Peng (Carnegie Mellon University) | |
| # 2023 Voicecomm Inc (Kai Li) | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # Modified from ESPnet(https://github.com/espnet/espnet) | |
| """MLP with convolutional gating (cgMLP) definition. | |
| References: | |
| https://openreview.net/forum?id=RA-zVvZLYIy | |
| https://arxiv.org/abs/2105.08050 | |
| """ | |
| from typing import Tuple | |
| import torch | |
| import torch.nn as nn | |
| from wenet.utils.class_utils import WENET_ACTIVATION_CLASSES | |
| class ConvolutionalSpatialGatingUnit(torch.nn.Module): | |
| """Convolutional Spatial Gating Unit (CSGU).""" | |
| def __init__( | |
| self, | |
| size: int, | |
| kernel_size: int, | |
| dropout_rate: float, | |
| use_linear_after_conv: bool, | |
| gate_activation: str, | |
| causal: bool = True, | |
| ): | |
| super().__init__() | |
| # split input channels | |
| n_channels = size // 2 | |
| self.norm = nn.LayerNorm(n_channels) | |
| # self.lorder is used to distinguish if it's a causal convolution, | |
| # if self.lorder > 0: it's a causal convolution, the input will be | |
| # padded with self.lorder frames on the left in forward. | |
| # else: it's a symmetrical convolution | |
| if causal: | |
| padding = 0 | |
| self.lorder = kernel_size - 1 | |
| else: | |
| # kernel_size should be an odd number for none causal convolution | |
| assert (kernel_size - 1) % 2 == 0 | |
| padding = (kernel_size - 1) // 2 | |
| self.lorder = 0 | |
| self.conv = torch.nn.Conv1d( | |
| n_channels, | |
| n_channels, | |
| kernel_size, | |
| 1, | |
| padding, | |
| groups=n_channels, | |
| ) | |
| if use_linear_after_conv: | |
| self.linear = torch.nn.Linear(n_channels, n_channels) | |
| else: | |
| self.linear = None | |
| if gate_activation == "identity": | |
| self.act = torch.nn.Identity() | |
| else: | |
| self.act = WENET_ACTIVATION_CLASSES[gate_activation]() | |
| self.dropout = torch.nn.Dropout(dropout_rate) | |
| def espnet_initialization_fn(self): | |
| torch.nn.init.normal_(self.conv.weight, std=1e-6) | |
| torch.nn.init.ones_(self.conv.bias) | |
| if self.linear is not None: | |
| torch.nn.init.normal_(self.linear.weight, std=1e-6) | |
| torch.nn.init.ones_(self.linear.bias) | |
| def forward( | |
| self, x: torch.Tensor, cache: torch.Tensor = torch.zeros((0, 0, 0)) | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| """Forward method | |
| Args: | |
| x (torch.Tensor): (batch, time, channels) | |
| cache (torch.Tensor): left context cache, it is only | |
| used in causal convolution (#batch, channels, cache_t), | |
| (0, 0, 0) meas fake cache. | |
| Returns: | |
| out (torch.Tensor): (batch, time, channels/2) | |
| """ | |
| x_r, x_g = x.chunk(2, dim=-1) | |
| # exchange the temporal dimension and the feature dimension | |
| x_g = x_g.transpose(1, 2) # (#batch, channels, time) | |
| if self.lorder > 0: | |
| if cache.size(2) == 0: # cache_t == 0 | |
| x_g = nn.functional.pad(x_g, (self.lorder, 0), 'constant', 0.0) | |
| else: | |
| assert cache.size(0) == x_g.size(0) # equal batch | |
| assert cache.size(1) == x_g.size(1) # equal channel | |
| x_g = torch.cat((cache, x_g), dim=2) | |
| assert (x_g.size(2) > self.lorder) | |
| new_cache = x_g[:, :, -self.lorder:] | |
| else: | |
| # It's better we just return None if no cache is required, | |
| # However, for JIT export, here we just fake one tensor instead of | |
| # None. | |
| new_cache = torch.zeros((0, 0, 0), | |
| dtype=x_g.dtype, | |
| device=x_g.device) | |
| x_g = x_g.transpose(1, 2) | |
| x_g = self.norm(x_g) # (N, T, D/2) | |
| x_g = self.conv(x_g.transpose(1, 2)).transpose(1, 2) # (N, T, D/2) | |
| if self.linear is not None: | |
| x_g = self.linear(x_g) | |
| x_g = self.act(x_g) | |
| out = x_r * x_g # (N, T, D/2) | |
| out = self.dropout(out) | |
| return out, new_cache | |
| class ConvolutionalGatingMLP(torch.nn.Module): | |
| """Convolutional Gating MLP (cgMLP).""" | |
| def __init__( | |
| self, | |
| size: int, | |
| linear_units: int, | |
| kernel_size: int, | |
| dropout_rate: float, | |
| use_linear_after_conv: bool, | |
| gate_activation: str, | |
| causal: bool = True, | |
| ): | |
| super().__init__() | |
| self.channel_proj1 = torch.nn.Sequential( | |
| torch.nn.Linear(size, linear_units), torch.nn.GELU()) | |
| self.csgu = ConvolutionalSpatialGatingUnit( | |
| size=linear_units, | |
| kernel_size=kernel_size, | |
| dropout_rate=dropout_rate, | |
| use_linear_after_conv=use_linear_after_conv, | |
| gate_activation=gate_activation, | |
| causal=causal, | |
| ) | |
| self.channel_proj2 = torch.nn.Linear(linear_units // 2, size) | |
| def forward( | |
| self, | |
| x: torch.Tensor, | |
| mask: torch.Tensor, | |
| cache: torch.Tensor = torch.zeros((0, 0, 0)) | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| """Forward method | |
| Args: | |
| x (torch.Tensor): (batch, time, channels) | |
| mask_pad (torch.Tensor): used for batch padding (#batch, 1, time), | |
| (0, 0, 0) means fake mask. Not used yet | |
| cache (torch.Tensor): left context cache, it is only | |
| used in causal convolution (#batch, channels, cache_t), | |
| (0, 0, 0) meas fake cache. | |
| Returns: | |
| out (torch.Tensor): (batch, time, channels/2) | |
| """ | |
| xs_pad = x | |
| # size -> linear_units | |
| xs_pad = self.channel_proj1(xs_pad) | |
| # linear_units -> linear_units/2 | |
| xs_pad, new_cnn_cache = self.csgu(xs_pad, cache) | |
| # linear_units/2 -> size | |
| xs_pad = self.channel_proj2(xs_pad) | |
| out = xs_pad | |
| return out, new_cnn_cache | |