Spaces:
Runtime error
Runtime error
| # Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang) | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import copy | |
| import librosa | |
| import logging | |
| import json | |
| import random | |
| import tarfile | |
| from subprocess import PIPE, Popen | |
| from urllib.parse import urlparse | |
| import torch | |
| import torchaudio | |
| import torchaudio.compliance.kaldi as kaldi | |
| import torch.nn.functional as F | |
| from gxl_ai_utils.utils import utils_file | |
| from torch.nn.utils.rnn import pad_sequence | |
| from wenet.text.base_tokenizer import BaseTokenizer | |
| # torchaudio.utils.sox_utils.set_buffer_size(16500) | |
| torchaudio.set_audio_backend("soundfile") | |
| AUDIO_FORMAT_SETS = set(['flac', 'mp3', 'm4a', 'ogg', 'opus', 'wav', 'wma']) | |
| def url_opener(data): | |
| """ Give url or local file, return file descriptor | |
| Inplace operation. | |
| Args: | |
| data(Iterable[str]): url or local file list | |
| Returns: | |
| Iterable[{src, stream}] | |
| """ | |
| for sample in data: | |
| assert 'src' in sample | |
| # TODO(Binbin Zhang): support HTTP | |
| url = sample['src'] | |
| try: | |
| pr = urlparse(url) | |
| # local file | |
| if pr.scheme == '' or pr.scheme == 'file': | |
| stream = open(url, 'rb') | |
| # network file, such as HTTP(HDFS/OSS/S3)/HTTPS/SCP | |
| else: | |
| cmd = f'wget -q -O - {url}' | |
| process = Popen(cmd, shell=True, stdout=PIPE) | |
| sample.update(process=process) | |
| stream = process.stdout | |
| sample.update(stream=stream) | |
| yield sample | |
| except Exception as ex: | |
| logging.warning('Failed to open {}'.format(url)) | |
| def tar_file_and_group(data): | |
| """ Expand a stream of open tar files into a stream of tar file contents. | |
| And groups the file with same prefix | |
| Args: | |
| data: Iterable[{src, stream}] | |
| Returns: | |
| Iterable[{key, wav, txt, sample_rate}] | |
| """ | |
| for sample in data: | |
| assert 'stream' in sample | |
| stream = None | |
| try: | |
| stream = tarfile.open(fileobj=sample['stream'], mode="r:*") | |
| prev_prefix = None | |
| example = {} | |
| valid = True | |
| for tarinfo in stream: | |
| name = tarinfo.name | |
| pos = name.rfind('.') | |
| assert pos > 0 | |
| prefix, postfix = name[:pos], name[pos + 1:] | |
| if prev_prefix is not None and prefix != prev_prefix: | |
| example['key'] = prev_prefix | |
| if valid: | |
| yield example | |
| example = {} | |
| valid = True | |
| with stream.extractfile(tarinfo) as file_obj: | |
| try: | |
| if postfix == 'txt': | |
| example['txt'] = file_obj.read().decode( | |
| 'utf8').strip() | |
| elif postfix in AUDIO_FORMAT_SETS: | |
| waveform, sample_rate = torchaudio.load(file_obj) | |
| example['wav'] = waveform | |
| example['sample_rate'] = sample_rate | |
| else: | |
| example[postfix] = file_obj.read() | |
| except Exception as ex: | |
| valid = False | |
| logging.warning('error to parse {}'.format(name)) | |
| prev_prefix = prefix | |
| if prev_prefix is not None: | |
| example['key'] = prev_prefix | |
| yield example | |
| except Exception as ex: | |
| logging.warning( | |
| 'In tar_file_and_group: {} when processing {}'.format( | |
| ex, sample['src'])) | |
| finally: | |
| if stream is not None: | |
| stream.close() | |
| if 'process' in sample: | |
| sample['process'].communicate() | |
| sample['stream'].close() | |
| def tar_file_and_group_full_data(data): | |
| """ Expand a stream of open tar files into a stream of tar file contents. | |
| And groups the file with same prefix | |
| Args: | |
| data: Iterable[{src, stream}] | |
| Returns: | |
| Iterable[{key, wav, txt, sample_rate}] | |
| """ | |
| for sample in data: | |
| assert 'stream' in sample | |
| stream = None | |
| try: | |
| stream = tarfile.open(fileobj=sample['stream'], mode="r:*") | |
| prev_prefix = None | |
| example = {} | |
| valid = True | |
| for tarinfo in stream: | |
| name = tarinfo.name | |
| pos = name.rfind('.') | |
| assert pos > 0 | |
| prefix, postfix = name[:pos], name[pos + 1:] | |
| if prev_prefix is not None and prefix != prev_prefix: | |
| example['key'] = prev_prefix | |
| if valid: | |
| # assert 'txt' in example | |
| if 'txt' not in example: | |
| example['txt'] = '' | |
| yield example | |
| example = {} | |
| valid = True | |
| with stream.extractfile(tarinfo) as file_obj: | |
| try: | |
| if postfix == 'txt': | |
| example['txt'] = file_obj.read().decode( | |
| 'utf8').strip() | |
| elif postfix == 'lang': | |
| example['lang'] = file_obj.read().decode( | |
| 'utf8').strip() | |
| elif postfix == 'speaker': | |
| try: | |
| example['speaker'] = file_obj.read().decode( | |
| 'utf8').strip() | |
| except Exception as ex: | |
| example['speaker'] = "none" | |
| elif postfix == 'emotion': | |
| example['emotion'] = file_obj.read().decode( | |
| 'utf8').strip() | |
| elif postfix == 'gender': | |
| example['gender'] = file_obj.read().decode( | |
| 'utf8').strip() | |
| elif postfix == 'task': | |
| example['task'] = file_obj.read().decode( | |
| 'utf8').strip() | |
| elif postfix == 'speech_token': | |
| example['speech_token'] = file_obj.read() | |
| elif postfix == 'duration': | |
| duration_str = file_obj.read().decode( | |
| 'utf8').strip() | |
| try: | |
| duration_float = float(duration_str) | |
| example['duration'] = duration_float | |
| except Exception as ex: | |
| logging.warning(f'error to parse duration {duration_str}') | |
| example['duration'] = 0 | |
| elif postfix in AUDIO_FORMAT_SETS: | |
| waveform, sample_rate = torchaudio.load(file_obj) | |
| # 检查音频的维度 | |
| num_channels = waveform.shape[0] | |
| # 如果音频是多通道的,则进行通道平均 | |
| if num_channels > 1: | |
| waveform = torch.mean(waveform, dim=0, keepdim=True) | |
| example['wav'] = waveform | |
| example['sample_rate'] = sample_rate | |
| else: | |
| example[postfix] = file_obj.read() | |
| except Exception as ex: | |
| valid = False | |
| # logging.warning('error to parse {}'.format(name)) | |
| prev_prefix = prefix | |
| if prev_prefix is not None: | |
| example['key'] = prev_prefix | |
| if 'txt' in example: | |
| yield example | |
| except Exception as ex: | |
| logging.warning( | |
| 'In tar_file_and_group: {} when processing {}'.format( | |
| ex, sample['src'])) | |
| finally: | |
| if stream is not None: | |
| stream.close() | |
| if 'process' in sample: | |
| sample['process'].communicate() | |
| sample['stream'].close() | |
| def parse_raw(data): | |
| """ Parse key/wav/txt from json line | |
| Args: | |
| data: Iterable[str], str is a json line has key/wav/txt | |
| Returns: | |
| Iterable[{key, wav, txt, sample_rate}] | |
| """ | |
| for sample in data: | |
| assert 'src' in sample | |
| json_line = sample['src'] | |
| obj = json.loads(json_line) | |
| assert 'key' in obj | |
| assert 'wav' in obj | |
| assert 'txt' in obj | |
| key = obj['key'] | |
| wav_file = obj['wav'] | |
| txt = obj['txt'] | |
| try: | |
| if 'start' in obj: | |
| assert 'end' in obj | |
| sample_rate = torchaudio.info(wav_file).sample_rate | |
| start_frame = int(obj['start'] * sample_rate) | |
| end_frame = int(obj['end'] * sample_rate) | |
| waveform, _ = torchaudio.load(filepath=wav_file, | |
| num_frames=end_frame - | |
| start_frame, | |
| frame_offset=start_frame) | |
| else: | |
| waveform, sample_rate = torchaudio.load(wav_file) | |
| # 检查音频的维度 | |
| num_channels = waveform.shape[0] | |
| # 如果音频是多通道的,则进行通道平均 | |
| if num_channels > 1: | |
| waveform = torch.mean(waveform, dim=0, keepdim=True) | |
| example = copy.deepcopy(obj) # copy and keep all the fields | |
| example['wav'] = waveform # overwrite wav | |
| example['sample_rate'] = sample_rate | |
| yield example | |
| except Exception as ex: | |
| logging.warning('Failed to read {}'.format(wav_file)) | |
| def parse_speaker(data, speaker_table_path): | |
| speaker_dict = {} | |
| with open(speaker_table_path, 'r', encoding='utf8') as fin: | |
| for line in fin: | |
| arr = line.strip().split() | |
| speaker_dict[arr[0]] = int(arr[1]) | |
| for sample in data: | |
| assert 'speaker' in sample | |
| speaker = sample['speaker'] | |
| sample['speaker'] = speaker_dict.get(speaker, 0) | |
| yield sample | |
| def filter(data, | |
| max_length=1200, | |
| min_length=10, | |
| token_max_length=250, | |
| token_min_length=1, | |
| min_output_input_ratio=0.00005, | |
| max_output_input_ratio=1, | |
| filter_no_extra_info: bool = False, | |
| max_seq_len=1000): | |
| """ Filter sample according to feature and label length | |
| Inplace operation. | |
| Args:: | |
| data: Iterable[{key, wav, label, sample_rate}] | |
| max_length: drop utterance which is greater than max_length(10ms) | |
| min_length: drop utterance which is less than min_length(10ms) | |
| token_max_length: drop utterance which is greater than | |
| token_max_length, especially when use char unit for | |
| english modeling | |
| token_min_length: drop utterance which is | |
| less than token_max_length | |
| min_output_input_ratio: minimal ration of | |
| token_length / feats_length(10ms) | |
| max_output_input_ratio: maximum ration of | |
| token_length / feats_length(10ms) | |
| Returns: | |
| Iterable[{key, wav, label, sample_rate}] | |
| """ | |
| for sample in data: | |
| try: | |
| assert 'sample_rate' in sample | |
| assert 'wav' in sample | |
| assert 'label' in sample | |
| except: | |
| continue | |
| # sample['wav'] is torch.Tensor, we have 100 frames every second | |
| num_frames = sample['wav'].size(1) / sample['sample_rate'] * 100 | |
| # filter for shard_in_common | |
| if filter_no_extra_info: | |
| if 'lang' not in sample: | |
| continue | |
| if 'task' not in sample: | |
| continue | |
| if num_frames < min_length: | |
| continue | |
| # if "output_type" in sample and sample["output_type"] == "speech2text_token": | |
| # max_length = int(max_length / 2) | |
| # if "output_type" in sample and sample["output_type"] == "text2token": | |
| # max_length = int(max_length / 1.5) | |
| if num_frames > max_length: | |
| # continue | |
| if 'task' in sample and sample['task'] == '<CAPTION>': | |
| # utils_file.logging_limit_print('进行了随机剪裁') | |
| # 随机选择一个起始点进行裁剪 | |
| start_frame = random.randint(0, int(num_frames - max_length)) | |
| end_frame = start_frame + max_length | |
| sample['wav'] = sample['wav'][:, int(start_frame / 100 * sample['sample_rate']): int( | |
| end_frame / 100 * sample['sample_rate'])] | |
| # print('sample[', sample['wav'].shape) | |
| else: | |
| continue | |
| if len(sample['label']) < token_min_length: | |
| continue | |
| if len(sample['label']) > token_max_length: | |
| continue | |
| # if num_frames != 0: | |
| # if len(sample['label']) / num_frames < min_output_input_ratio: | |
| # continue | |
| # if len(sample['label']) / num_frames > max_output_input_ratio: | |
| # continue | |
| if sample["output_type"] == "speech2text_token": | |
| seq_len = len(sample['prompt']) + num_frames / 8 + len(sample['label']) + len(sample['speech_token']) | |
| elif sample["output_type"] == "text2token": | |
| seq_len = len(sample['prompt']) + len(sample['label']) + len(sample['speech_token']) | |
| else: | |
| seq_len = len(sample['prompt']) + num_frames / 8 + len(sample['label']) | |
| utils_file.logging_limit_print(f'seqlen: {seq_len}, output_type:{sample["output_type"]},len(sample["prompt"]):{len(sample["prompt"])},num_frames / 8:{num_frames / 8},len(sample["label"]):{len(sample["label"])},len(sample["speech_token"]):{len(sample["speech_token"])} ') | |
| if max_seq_len > 0 and max_seq_len < seq_len: | |
| utils_file.logging_limit_print(f"seqlen: {seq_len} 超过了最大长度:{max_seq_len},contiune") | |
| continue | |
| yield sample | |
| def resample(data, resample_rate=16000): | |
| """ Resample data. | |
| Inplace operation. | |
| Args: | |
| data: Iterable[{key, wav, label, sample_rate}] | |
| resample_rate: target resample rate | |
| Returns: | |
| Iterable[{key, wav, label, sample_rate}] | |
| """ | |
| for sample in data: | |
| assert 'sample_rate' in sample | |
| assert 'wav' in sample | |
| sample_rate = sample['sample_rate'] | |
| waveform = sample['wav'] | |
| if sample_rate != resample_rate: | |
| sample['sample_rate'] = resample_rate | |
| sample['wav'] = torchaudio.transforms.Resample( | |
| orig_freq=sample_rate, new_freq=resample_rate)(waveform) | |
| yield sample | |
| def speed_perturb(data, speeds=None): | |
| """ Apply speed perturb to the data. | |
| Inplace operation. | |
| Args: | |
| data: Iterable[{key, wav, label, sample_rate}] | |
| speeds(List[float]): optional speed | |
| Returns: | |
| Iterable[{key, wav, label, sample_rate}] | |
| """ | |
| if speeds is None: | |
| speeds = [0.9, 1.0, 1.1] | |
| for sample in data: | |
| assert 'sample_rate' in sample | |
| assert 'wav' in sample | |
| sample_rate = sample['sample_rate'] | |
| waveform = sample['wav'] | |
| speed = random.choice(speeds) | |
| if speed != 1.0: | |
| wav, _ = torchaudio.sox_effects.apply_effects_tensor( | |
| waveform, sample_rate, | |
| [['speed', str(speed)], ['rate', str(sample_rate)]]) | |
| sample['wav'] = wav | |
| yield sample | |
| def compute_fbank(data, | |
| num_mel_bins=23, | |
| frame_length=25, | |
| frame_shift=10, | |
| dither=0.0): | |
| """ Extract fbank | |
| Args: | |
| data: Iterable[{key, wav, label, sample_rate}] | |
| Returns: | |
| Iterable[{key, feat, label}] | |
| """ | |
| for sample in data: | |
| assert 'sample_rate' in sample | |
| assert 'wav' in sample | |
| assert 'key' in sample | |
| assert 'label' in sample | |
| sample_rate = sample['sample_rate'] | |
| waveform = sample['wav'] | |
| waveform = waveform * (1 << 15) | |
| # Only keep key, feat, label | |
| mat = kaldi.fbank(waveform, | |
| num_mel_bins=num_mel_bins, | |
| frame_length=frame_length, | |
| frame_shift=frame_shift, | |
| dither=dither, | |
| energy_floor=0.0, | |
| sample_frequency=sample_rate) | |
| sample['feat'] = mat | |
| yield sample | |
| def compute_mfcc(data, | |
| num_mel_bins=23, | |
| frame_length=25, | |
| frame_shift=10, | |
| dither=0.0, | |
| num_ceps=40, | |
| high_freq=0.0, | |
| low_freq=20.0): | |
| """ Extract mfcc | |
| Args: | |
| data: Iterable[{key, wav, label, sample_rate}] | |
| Returns: | |
| Iterable[{key, feat, label}] | |
| """ | |
| for sample in data: | |
| assert 'sample_rate' in sample | |
| assert 'wav' in sample | |
| assert 'key' in sample | |
| assert 'label' in sample | |
| sample_rate = sample['sample_rate'] | |
| waveform = sample['wav'] | |
| waveform = waveform * (1 << 15) | |
| # Only keep key, feat, label | |
| mat = kaldi.mfcc(waveform, | |
| num_mel_bins=num_mel_bins, | |
| frame_length=frame_length, | |
| frame_shift=frame_shift, | |
| dither=dither, | |
| num_ceps=num_ceps, | |
| high_freq=high_freq, | |
| low_freq=low_freq, | |
| sample_frequency=sample_rate) | |
| sample['feat'] = mat | |
| yield sample | |
| def compute_log_mel_spectrogram(data, | |
| n_fft=400, | |
| hop_length=160, | |
| num_mel_bins=80, | |
| padding=0): | |
| """ Extract log mel spectrogram, modified from openai-whisper, see: | |
| - https://github.com/openai/whisper/blob/main/whisper/audio.py | |
| - https://github.com/wenet-e2e/wenet/pull/2141#issuecomment-1811765040 | |
| Args: | |
| data: Iterable[{key, wav, label, sample_rate}] | |
| Returns: | |
| Iterable[{key, feat, label}] | |
| """ | |
| for sample in data: | |
| assert 'sample_rate' in sample | |
| assert 'wav' in sample | |
| assert 'key' in sample | |
| assert 'label' in sample | |
| sample_rate = sample['sample_rate'] | |
| waveform = sample['wav'].squeeze(0) # (channel=1, sample) -> (sample,) | |
| # print(f'wavform shape: {waveform.shape}') | |
| if padding > 0: | |
| waveform = F.pad(waveform, (0, padding)) | |
| window = torch.hann_window(n_fft) | |
| stft = torch.stft(waveform, | |
| n_fft, | |
| hop_length, | |
| window=window, | |
| return_complex=True) | |
| magnitudes = stft[..., :-1].abs() ** 2 | |
| filters = torch.from_numpy( | |
| librosa.filters.mel(sr=sample_rate, | |
| n_fft=n_fft, | |
| n_mels=num_mel_bins)) | |
| mel_spec = filters @ magnitudes | |
| # NOTE(xcsong): https://github.com/openai/whisper/discussions/269 | |
| log_spec = torch.clamp(mel_spec, min=1e-10).log10() | |
| log_spec = torch.maximum(log_spec, log_spec.max() - 8.0) | |
| log_spec = (log_spec + 4.0) / 4.0 | |
| sample['feat'] = log_spec.transpose(0, 1) | |
| yield sample | |
| import re | |
| def process_text(text): | |
| # 1. 删除汉字左右两侧的空格 | |
| text = re.sub(r'\s*([\u4e00-\u9fff])\s*', r'\1', text) | |
| # 2. 将英文转成小写 | |
| text = text.lower() | |
| # 3. 删除 < 和 > 符号两侧的空格 | |
| text = re.sub(r'\s*<\s*', '<', text) | |
| text = re.sub(r'\s*>\s*', '>', text) | |
| return text | |
| global_style_dict = { | |
| "朗读": "新闻科普", | |
| "科普百科": "新闻科普", | |
| "悬疑恐怖": "恐怖故事", | |
| "童话故事": "童话故事", | |
| "客服": "客服", | |
| "诗歌": "诗歌散文", | |
| "散文": "诗歌散文", | |
| "武侠评书": "有声书", | |
| "小说": "有声书", | |
| "历史": "有声书", | |
| "科幻": "有声书", | |
| "对话": "日常口语", | |
| "口语": "日常口语", | |
| "幽默": "其他", | |
| "其他": "其他", | |
| } | |
| def replace_keys_in_brackets(input_str, key_value_dict): | |
| for key, value in key_value_dict.items(): | |
| # 构造匹配 <key> 形式的正则表达式模式 | |
| pattern = re.compile(r'<{}>'.format(key)) | |
| input_str = pattern.sub(f"<{value}>", input_str) | |
| return input_str | |
| def tokenize(data, tokenizer: BaseTokenizer, global_prompt_dict=None): | |
| """ Decode text to chars or BPE | |
| Inplace operation | |
| Args: | |
| data: Iterable[{key, wav, txt, sample_rate}] | |
| Returns: | |
| Iterable[{key, wav, txt, tokens, label, sample_rate}] | |
| """ | |
| for sample in data: | |
| try: | |
| assert 'txt' in sample | |
| except: | |
| print(f'tokenize: {sample}') | |
| exit() | |
| if 'task' in sample: | |
| task_name = sample['task'] | |
| # if "<AGE>" in task_name: | |
| # txt = sample['txt'].replace("<YOUTH>", "<ADULT>").replace("<MIDDLE_AGE>", "<ADULT>").replace("<MIDDLE>", "<ADULT>") | |
| if "<STYLE>" in sample['task']: | |
| txt = replace_keys_in_brackets(sample['txt'], global_style_dict) | |
| else: | |
| txt = sample['txt'] | |
| else: | |
| txt = sample['txt'] | |
| tokens, label = tokenizer.tokenize(process_text(txt)) | |
| sample['tokens'] = tokens # token是字符, label是数字 | |
| sample['label'] = label + [tokenizer.eod_id] | |
| if 'task' in sample: | |
| task_name = sample['task'] | |
| try: | |
| random_index = random.randint(0, len(global_prompt_dict[task_name]) - 1) | |
| prompt = global_prompt_dict[task_name][random_index] | |
| sample['prompt'] = tokenizer.tokenize(prompt)[1] # labels | |
| except: | |
| pass | |
| else: | |
| task_name = '<TRANSCRIBE>' | |
| try: | |
| random_index = random.randint(0, len(global_prompt_dict[task_name]) - 1) | |
| prompt = global_prompt_dict[task_name][random_index] | |
| sample['prompt'] = tokenizer.tokenize(prompt)[1] # labels | |
| except: | |
| pass | |
| if 'speech_token' in sample: | |
| old_task_name = sample['task'] | |
| if old_task_name == "<TRANSCRIBE>": | |
| task_name = '<TEXT2SPEECH_TOKEN>' | |
| sample['output_type'] = 'text2token' | |
| elif old_task_name == "<S2TCHAT>": | |
| task_name = '<SPEECH2TEXT_SPEECH_TOKEN>' | |
| sample['output_type'] = 'speech2text_token' | |
| else: | |
| task_name = old_task_name | |
| try: | |
| random_index = random.randint(0, len(global_prompt_dict[task_name]) - 1) | |
| prompt = global_prompt_dict[task_name][random_index] | |
| sample['prompt'] = tokenizer.tokenize(prompt)[1] # labels | |
| except: | |
| pass | |
| # 报错修改 from sywang ,只有推理的时候才会需要(raw格式),tar格式会自动转int list | |
| # try: | |
| # utils_file.logging_limit_print("type of sample['speech_token']: ", type(sample['speech_token'])) | |
| # speech_tokens = ast.literal_eval(sample['speech_token']) # 解析字符串为列表 | |
| # except (ValueError, SyntaxError) as e: | |
| # print(f"解析错误: {e}在{speech_tokens}") | |
| # speech_tokens = [] | |
| # speech_token = [int(x) for x in speech_tokens] | |
| speech_token = [int(x) for x in sample['speech_token']] | |
| sample['speech_token'] = speech_token + [4096] | |
| else: | |
| sample['output_type'] = 'text' | |
| sample['speech_token'] = [4096] | |
| yield sample | |
| def spec_aug(data, num_t_mask=2, num_f_mask=2, max_t=50, max_f=10, max_w=80): | |
| """ Do spec augmentation | |
| Inplace operation | |
| Args: | |
| data: Iterable[{key, feat, label}] | |
| num_t_mask: number of time mask to apply | |
| num_f_mask: number of freq mask to apply | |
| max_t: max width of time mask | |
| max_f: max width of freq mask | |
| max_w: max width of time warp | |
| Returns | |
| Iterable[{key, feat, label}] | |
| """ | |
| for sample in data: | |
| assert 'feat' in sample | |
| x = sample['feat'] | |
| assert isinstance(x, torch.Tensor) | |
| y = x.clone().detach() | |
| max_frames = y.size(0) | |
| max_freq = y.size(1) | |
| # time mask | |
| for i in range(num_t_mask): | |
| start = random.randint(0, max_frames - 1) | |
| length = random.randint(1, max_t) | |
| end = min(max_frames, start + length) | |
| y[start:end, :] = 0 | |
| # freq mask | |
| for i in range(num_f_mask): | |
| start = random.randint(0, max_freq - 1) | |
| length = random.randint(1, max_f) | |
| end = min(max_freq, start + length) | |
| y[:, start:end] = 0 | |
| sample['feat'] = y | |
| yield sample | |
| def spec_sub(data, max_t=20, num_t_sub=3): | |
| """ Do spec substitute | |
| Inplace operation | |
| ref: U2++, section 3.2.3 [https://arxiv.org/abs/2106.05642] | |
| Args: | |
| data: Iterable[{key, feat, label}] | |
| max_t: max width of time substitute | |
| num_t_sub: number of time substitute to apply | |
| Returns | |
| Iterable[{key, feat, label}] | |
| """ | |
| for sample in data: | |
| assert 'feat' in sample | |
| x = sample['feat'] | |
| assert isinstance(x, torch.Tensor) | |
| y = x.clone().detach() | |
| max_frames = y.size(0) | |
| for i in range(num_t_sub): | |
| start = random.randint(0, max_frames - 1) | |
| length = random.randint(1, max_t) | |
| end = min(max_frames, start + length) | |
| # only substitute the earlier time chosen randomly for current time | |
| pos = random.randint(0, start) | |
| y[start:end, :] = x[start - pos:end - pos, :] | |
| sample['feat'] = y | |
| yield sample | |
| def spec_trim(data, max_t=20): | |
| """ Trim tailing frames. Inplace operation. | |
| ref: TrimTail [https://arxiv.org/abs/2211.00522] | |
| Args: | |
| data: Iterable[{key, feat, label}] | |
| max_t: max width of length trimming | |
| Returns | |
| Iterable[{key, feat, label}] | |
| """ | |
| for sample in data: | |
| assert 'feat' in sample | |
| x = sample['feat'] | |
| assert isinstance(x, torch.Tensor) | |
| max_frames = x.size(0) | |
| length = random.randint(1, max_t) | |
| if length < max_frames / 2: | |
| y = x.clone().detach()[:max_frames - length] | |
| sample['feat'] = y | |
| yield sample | |
| def shuffle(data, shuffle_size=10000): | |
| """ Local shuffle the data | |
| Args: | |
| data: Iterable[{key, feat, label}] | |
| shuffle_size: buffer size for shuffle | |
| Returns: | |
| Iterable[{key, feat, label}] | |
| """ | |
| buf = [] | |
| for sample in data: | |
| buf.append(sample) | |
| if len(buf) >= shuffle_size: | |
| random.shuffle(buf) | |
| for x in buf: | |
| yield x | |
| buf = [] | |
| # The sample left over | |
| random.shuffle(buf) | |
| for x in buf: | |
| yield x | |
| def sort(data, sort_size=500): | |
| """ Sort the data by feature length. | |
| Sort is used after shuffle and before batch, so we can group | |
| utts with similar lengths into a batch, and `sort_size` should | |
| be less than `shuffle_size` | |
| Args: | |
| data: Iterable[{key, feat, label}] | |
| sort_size: buffer size for sort | |
| Returns: | |
| Iterable[{key, feat, label}] | |
| """ | |
| buf = [] | |
| for sample in data: | |
| buf.append(sample) | |
| if len(buf) >= sort_size: | |
| buf.sort(key=lambda x: x['feat'].size(0)) | |
| for x in buf: | |
| yield x | |
| buf = [] | |
| # The sample left over | |
| buf.sort(key=lambda x: x['feat'].size(0)) | |
| for x in buf: | |
| yield x | |
| def static_batch(data, batch_size=16): | |
| """ Static batch the data by `batch_size` | |
| Args: | |
| data: Iterable[{key, feat, label}] | |
| batch_size: batch size | |
| Returns: | |
| Iterable[List[{key, feat, label}]] | |
| """ | |
| buf = [] | |
| for sample in data: | |
| buf.append(sample) | |
| if len(buf) >= batch_size: | |
| yield buf | |
| buf = [] | |
| if len(buf) > 0: | |
| yield buf | |
| def dynamic_batch(data, max_frames_in_batch=12000, max_seq_in_batch=10000000): | |
| """ Dynamic batch the data until the total frames in batch | |
| reach `max_frames_in_batch` | |
| Args: | |
| data: Iterable[{key, feat, label}] | |
| max_frames_in_batch: max_frames in one batch | |
| Returns: | |
| Iterable[List[{key, feat, label}]] | |
| """ | |
| buf = [] | |
| longest_frames = 0 | |
| longest_seq = 0 | |
| max_frames_in_batch = max_frames_in_batch | |
| buf_speech_token = [] | |
| longest_frames_token = 0 | |
| longest_seq_token = 0 | |
| max_frames_in_batch_token = int(max_frames_in_batch) | |
| buf_speech_token_with_text = [] | |
| longest_frames_token_with_text = 0 | |
| longest_seq_token_with_text = 0 | |
| max_frames_in_batch_token_with_text = int(max_frames_in_batch / 2.5) | |
| for sample in data: | |
| assert 'feat' in sample | |
| assert isinstance(sample['feat'], torch.Tensor) | |
| new_sample_frames = sample['feat'].size(0) | |
| if "output_type" in sample and sample["output_type"] == "speech2text_token": | |
| new_seq = sample['feat'].size(0) / 8 + len(sample['label']) + len(sample.get('prompt', [])) + len( | |
| sample.get('speech_token', [])) | |
| longest_seq_token = max(longest_seq_token, new_seq) | |
| utils_file.logging_limit_print( | |
| f'batchf fuc,当前条目new_seq为: {new_seq},longest_seq_token为: {longest_seq_token}') | |
| longest_frames_token = max(longest_frames_token, new_sample_frames) | |
| frames_after_padding_token = longest_frames_token * (len(buf_speech_token)+1) | |
| seq_after_padding_token = longest_seq_token * (len(buf_speech_token)+1) | |
| utils_file.logging_limit_print( | |
| f'batchf fuc,当前条目new_seq为: {new_seq},longest_seq_token为: {longest_seq_token},seq_after_padding_token: {seq_after_padding_token}') | |
| utils_file.logging_limit_print( | |
| f'batchf fuc,当前条目 new_sample_frames 为: {new_sample_frames},longest_frames_token: {longest_frames_token},frames_after_padding_token: {frames_after_padding_token}') | |
| if frames_after_padding_token > max_frames_in_batch_token or seq_after_padding_token > max_seq_in_batch: | |
| yield buf_speech_token | |
| buf_speech_token = [sample] | |
| longest_frames_token = new_sample_frames | |
| longest_seq_token = new_seq | |
| else: | |
| buf_speech_token.append(sample) | |
| elif "output_type" in sample and sample["output_type"] == "text2token": | |
| new_seq = len(sample['label']) + len(sample.get('prompt', [])) + len( | |
| sample.get('speech_token', [])) | |
| longest_seq_token_with_text = max(longest_seq_token_with_text, new_seq) | |
| longest_frames_token_with_text = max(longest_frames_token_with_text, new_sample_frames) | |
| frames_after_padding_token_with_text = longest_frames_token_with_text * (len(buf_speech_token_with_text)+1) | |
| seq_after_padding_token_with_text = longest_seq_token_with_text * (len(buf_speech_token_with_text)+1) | |
| if frames_after_padding_token_with_text > max_frames_in_batch_token_with_text or seq_after_padding_token_with_text > max_seq_in_batch: | |
| yield buf_speech_token_with_text | |
| buf_speech_token_with_text = [sample] | |
| longest_frames_token_with_text = new_sample_frames | |
| longest_seq_token_with_text = new_seq | |
| else: | |
| buf_speech_token_with_text.append(sample) | |
| else: | |
| new_seq = sample['feat'].size(0) / 8 + len(sample['label']) + len(sample.get('prompt', [])) | |
| longest_seq = max(longest_seq, new_seq) | |
| longest_frames = max(longest_frames, new_sample_frames) | |
| frames_after_padding = longest_frames * (len(buf)+1) | |
| seq_after_padding = longest_seq * (len(buf)+1) | |
| if frames_after_padding > max_frames_in_batch or seq_after_padding > max_seq_in_batch: | |
| yield buf | |
| buf = [sample] | |
| longest_frames = new_sample_frames | |
| longest_seq = new_seq | |
| else: | |
| buf.append(sample) | |
| if len(buf) > 0: | |
| yield buf | |
| def batch(data, batch_type='static', batch_size=16, max_frames_in_batch=12000, max_seq_in_batch=10000000): | |
| """ Wrapper for static/dynamic batch | |
| """ | |
| if batch_type == 'static': | |
| return static_batch(data, batch_size) | |
| elif batch_type == 'dynamic': | |
| return dynamic_batch(data, max_frames_in_batch, max_seq_in_batch=max_seq_in_batch) | |
| else: | |
| logging.fatal('Unsupported batch type {}'.format(batch_type)) | |
| def padding(data): | |
| """ Padding the data into training data | |
| Args: | |
| data: Iterable[List[{key, feat, label}]] | |
| Returns: | |
| Iterable[Tuple(keys, feats, labels, feats lengths, label lengths)] | |
| """ | |
| for sample in data: | |
| assert isinstance(sample, list) | |
| feats_length = torch.tensor([x['feat'].size(0) for x in sample], | |
| dtype=torch.int32) | |
| order = torch.argsort(feats_length, descending=True) | |
| feats_lengths = torch.tensor( | |
| [sample[i]['feat'].size(0) for i in order], dtype=torch.int32) | |
| sorted_feats = [sample[i]['feat'] for i in order] | |
| sorted_keys = [sample[i]['key'] for i in order] | |
| sorted_labels = [ | |
| torch.tensor(sample[i]['label'], dtype=torch.int64) for i in order | |
| ] | |
| sorted_speech_tokens = [ | |
| torch.tensor(sample[i]['speech_token'], dtype=torch.int64) for i in order | |
| ] | |
| sorted_wavs = [sample[i]['wav'].squeeze(0) for i in order] | |
| label_lengths = torch.tensor([x.size(0) for x in sorted_labels], | |
| dtype=torch.int32) | |
| speech_token_lengths = torch.tensor([x.size(0) for x in sorted_speech_tokens], | |
| dtype=torch.int32) | |
| wav_lengths = torch.tensor([x.size(0) for x in sorted_wavs], | |
| dtype=torch.int32) | |
| # print('------------------') | |
| # for feat_item in sorted_feats: | |
| # print(feat_item.shape) | |
| # print('------------------') | |
| padded_feats = pad_sequence(sorted_feats, | |
| batch_first=True, | |
| padding_value=0) | |
| padding_labels = pad_sequence(sorted_labels, | |
| batch_first=True, | |
| padding_value=-100) | |
| padding_speech_tokens = pad_sequence(sorted_speech_tokens, | |
| batch_first=True, | |
| padding_value=-100) | |
| padded_wavs = pad_sequence(sorted_wavs, | |
| batch_first=True, | |
| padding_value=0) | |
| sorted_lang = [ | |
| sample[i].get('lang', 'cn') for i in order | |
| ] | |
| sorted_speaker = [ | |
| sample[i].get('speaker', 'None') for i in order | |
| ] | |
| sorted_emotion = [ | |
| sample[i].get('emotion', 'None') for i in order | |
| ] | |
| sorted_gender = [ | |
| sample[i].get('gender', 'None') for i in order | |
| ] | |
| # sorted_duration = [ | |
| # sample[i]['duration'] for i in order | |
| # ] | |
| sorted_task = [ | |
| sample[i].get('task', '<TRANSCRIBE>') for i in order | |
| ] | |
| batch = { | |
| "keys": sorted_keys, | |
| "feats": padded_feats, | |
| "target": padding_labels, | |
| "feats_lengths": feats_lengths, | |
| "target_lengths": label_lengths, | |
| "pcm": padded_wavs, | |
| "pcm_length": wav_lengths, | |
| "speech_tokens": padding_speech_tokens, | |
| "speech_tokens_length": speech_token_lengths, | |
| "lang": sorted_lang, | |
| "speaker": sorted_speaker, | |
| "emotion": sorted_emotion, | |
| "gender": sorted_gender, | |
| "task": sorted_task | |
| } | |
| if 'prompt' in sample[0]: | |
| sorted_prompts = [ | |
| torch.tensor(sample[i]['prompt'], dtype=torch.int64 | |
| ) for i in order | |
| ] | |
| prompt_lengths = torch.tensor([x.size(0) for x in | |
| sorted_prompts], dtype=torch.int32) | |
| padding_prompts = pad_sequence(sorted_prompts, | |
| batch_first=True, | |
| padding_value=-1) | |
| batch['prompt'] = padding_prompts | |
| batch['prompt_lengths'] = prompt_lengths | |
| if 'output_type' in sample[0] and sample[0]['output_type'] == 'speech2text_token': | |
| batch['output_type'] = 'speech2text_token' | |
| elif 'output_type' in sample[0] and sample[0]['output_type'] == 'text2token': | |
| batch['output_type'] = 'text2token' | |
| else: | |
| batch['output_type'] = 'text' | |
| yield batch | |