File size: 15,590 Bytes
b4123b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
"""
Spectral feature extraction for the Sorghum Pipeline.

This module handles extraction of spectral features and analysis
of multispectral data.
"""

import numpy as np
import cv2
from sklearn.decomposition import PCA
from typing import Dict, Any, Optional, List, Tuple
import logging

logger = logging.getLogger(__name__)


class SpectralExtractor:
    """Extracts spectral features from multispectral data."""
    
    def __init__(self, n_components: int = 3):
        """
        Initialize spectral extractor.
        
        Args:
            n_components: Number of PCA components to extract
        """
        self.n_components = n_components
    
    def extract_spectral_features(self, spectral_stack: Dict[str, np.ndarray], 
                                mask: Optional[np.ndarray] = None) -> Dict[str, Any]:
        """
        Extract spectral features from multispectral data.
        
        Args:
            spectral_stack: Dictionary of spectral bands
            mask: Optional binary mask
            
        Returns:
            Dictionary containing spectral features
        """
        features = {}
        
        try:
            # Extract individual band features
            features['band_features'] = self._extract_band_features(spectral_stack, mask)
            
            # Extract PCA features
            features['pca_features'] = self._extract_pca_features(spectral_stack, mask)
            
            # Extract spectral indices
            features['spectral_indices'] = self._extract_spectral_indices(spectral_stack, mask)
            
            # Extract texture features from spectral bands
            features['spectral_texture'] = self._extract_spectral_texture(spectral_stack, mask)
            
            logger.debug("Spectral features extracted successfully")
            
        except Exception as e:
            logger.error(f"Spectral feature extraction failed: {e}")
        
        return features
    
    def _extract_band_features(self, spectral_stack: Dict[str, np.ndarray], 
                             mask: Optional[np.ndarray] = None) -> Dict[str, Dict[str, float]]:
        """Extract features from individual spectral bands."""
        band_features = {}
        
        for band_name, band_data in spectral_stack.items():
            try:
                # Squeeze to 2D if needed
                if band_data.ndim > 2:
                    band_data = band_data.squeeze()
                
                # Apply mask if provided
                if mask is not None and mask.shape == band_data.shape:
                    masked_data = np.where(mask > 0, band_data, np.nan)
                else:
                    masked_data = band_data
                
                # Compute statistics
                valid_data = masked_data[~np.isnan(masked_data)]
                if len(valid_data) > 0:
                    band_features[band_name] = {
                        'mean': float(np.mean(valid_data)),
                        'std': float(np.std(valid_data)),
                        'min': float(np.min(valid_data)),
                        'max': float(np.max(valid_data)),
                        'median': float(np.median(valid_data)),
                        'q25': float(np.percentile(valid_data, 25)),
                        'q75': float(np.percentile(valid_data, 75)),
                        'skewness': float(self._compute_skewness(valid_data)),
                        'kurtosis': float(self._compute_kurtosis(valid_data)),
                        'entropy': float(self._compute_entropy(valid_data))
                    }
                else:
                    band_features[band_name] = {
                        'mean': 0.0, 'std': 0.0, 'min': 0.0, 'max': 0.0,
                        'median': 0.0, 'q25': 0.0, 'q75': 0.0,
                        'skewness': 0.0, 'kurtosis': 0.0, 'entropy': 0.0
                    }
                
            except Exception as e:
                logger.error(f"Band feature extraction failed for {band_name}: {e}")
                band_features[band_name] = {}
        
        return band_features
    
    def _extract_pca_features(self, spectral_stack: Dict[str, np.ndarray], 
                            mask: Optional[np.ndarray] = None) -> Dict[str, Any]:
        """Extract PCA features from spectral data."""
        try:
            # Stack all bands
            band_names = ['nir', 'red_edge', 'red', 'green']
            band_data = []
            
            for band_name in band_names:
                if band_name in spectral_stack:
                    arr = spectral_stack[band_name].squeeze().astype(float)
                    if mask is not None and mask.shape == arr.shape:
                        arr = np.where(mask > 0, arr, np.nan)
                    band_data.append(arr)
            
            if not band_data:
                return {}
            
            # Stack bands
            full_stack = np.stack(band_data, axis=-1)
            h, w, c = full_stack.shape
            
            # Reshape for PCA
            flat_data = full_stack.reshape(-1, c)
            valid_mask = ~np.isnan(flat_data).any(axis=1)
            
            if valid_mask.sum() == 0:
                return {}
            
            # Apply PCA
            valid_data = flat_data[valid_mask]
            pca = PCA(n_components=min(self.n_components, valid_data.shape[1]))
            pca_result = pca.fit_transform(valid_data)
            
            # Create full result array
            full_result = np.full((h * w, self.n_components), np.nan)
            full_result[valid_mask] = pca_result
            
            # Reshape back to image dimensions
            pca_components = {}
            for i in range(self.n_components):
                component = full_result[:, i].reshape(h, w)
                pca_components[f'pca_{i+1}'] = component
                
                # Compute statistics for this component
                valid_component = component[~np.isnan(component)]
                if len(valid_component) > 0:
                    pca_components[f'pca_{i+1}_stats'] = {
                        'mean': float(np.mean(valid_component)),
                        'std': float(np.std(valid_component)),
                        'min': float(np.min(valid_component)),
                        'max': float(np.max(valid_component))
                    }
            
            # Add PCA metadata
            pca_components['explained_variance_ratio'] = pca.explained_variance_ratio_.tolist()
            pca_components['total_variance_explained'] = float(np.sum(pca.explained_variance_ratio_))
            
            return pca_components
            
        except Exception as e:
            logger.error(f"PCA feature extraction failed: {e}")
            return {}
    
    def _extract_spectral_indices(self, spectral_stack: Dict[str, np.ndarray], 
                                mask: Optional[np.ndarray] = None) -> Dict[str, np.ndarray]:
        """Extract basic spectral indices."""
        indices = {}
        
        try:
            # Get required bands
            nir = spectral_stack.get('nir', None)
            red = spectral_stack.get('red', None)
            green = spectral_stack.get('green', None)
            red_edge = spectral_stack.get('red_edge', None)
            
            if nir is not None:
                nir = nir.squeeze().astype(float)
            if red is not None:
                red = red.squeeze().astype(float)
            if green is not None:
                green = green.squeeze().astype(float)
            if red_edge is not None:
                red_edge = red_edge.squeeze().astype(float)
            
            # Apply mask
            if mask is not None:
                if nir is not None and mask.shape == nir.shape:
                    nir = np.where(mask > 0, nir, np.nan)
                if red is not None and mask.shape == red.shape:
                    red = np.where(mask > 0, red, np.nan)
                if green is not None and mask.shape == green.shape:
                    green = np.where(mask > 0, green, np.nan)
                if red_edge is not None and mask.shape == red_edge.shape:
                    red_edge = np.where(mask > 0, red_edge, np.nan)
            
            # Compute basic indices
            if nir is not None and red is not None:
                indices['nir_red_ratio'] = nir / (red + 1e-10)
                indices['nir_red_diff'] = nir - red
            
            if nir is not None and green is not None:
                indices['nir_green_ratio'] = nir / (green + 1e-10)
                indices['nir_green_diff'] = nir - green
            
            if red is not None and green is not None:
                indices['red_green_ratio'] = red / (green + 1e-10)
                indices['red_green_diff'] = red - green
            
            if nir is not None and red_edge is not None:
                indices['nir_red_edge_ratio'] = nir / (red_edge + 1e-10)
                indices['nir_red_edge_diff'] = nir - red_edge
            
            # Compute band ratios
            if nir is not None and red is not None and green is not None:
                indices['nir_red_green_sum'] = nir + red + green
                indices['nir_red_green_mean'] = (nir + red + green) / 3
            
        except Exception as e:
            logger.error(f"Spectral index extraction failed: {e}")
        
        return indices
    
    def _extract_spectral_texture(self, spectral_stack: Dict[str, np.ndarray], 
                                mask: Optional[np.ndarray] = None) -> Dict[str, Any]:
        """Extract texture features from spectral bands."""
        texture_features = {}
        
        try:
            from .texture import TextureExtractor
            
            texture_extractor = TextureExtractor()
            
            for band_name, band_data in spectral_stack.items():
                try:
                    # Prepare grayscale image
                    gray_data = band_data.squeeze().astype(float)
                    
                    # Apply mask
                    if mask is not None and mask.shape == gray_data.shape:
                        gray_data = np.where(mask > 0, gray_data, np.nan)
                    
                    # Normalize to 0-255
                    valid_data = gray_data[~np.isnan(gray_data)]
                    if len(valid_data) > 0:
                        m, M = np.min(valid_data), np.max(valid_data)
                        if M > m:
                            normalized = ((gray_data - m) / (M - m) * 255).astype(np.uint8)
                        else:
                            normalized = np.zeros_like(gray_data, dtype=np.uint8)
                    else:
                        normalized = np.zeros_like(gray_data, dtype=np.uint8)
                    
                    # Extract texture features
                    band_texture = texture_extractor.extract_all_texture_features(normalized)
                    texture_features[band_name] = band_texture
                    
                except Exception as e:
                    logger.error(f"Spectral texture extraction failed for {band_name}: {e}")
                    texture_features[band_name] = {}
        
        except ImportError:
            logger.warning("TextureExtractor not available for spectral texture analysis")
        
        return texture_features
    
    def _compute_skewness(self, data: np.ndarray) -> float:
        """Compute skewness of data."""
        if len(data) < 3:
            return 0.0
        
        mean = np.mean(data)
        std = np.std(data)
        if std == 0:
            return 0.0
        
        return np.mean(((data - mean) / std) ** 3)
    
    def _compute_kurtosis(self, data: np.ndarray) -> float:
        """Compute kurtosis of data."""
        if len(data) < 4:
            return 0.0
        
        mean = np.mean(data)
        std = np.std(data)
        if std == 0:
            return 0.0
        
        return np.mean(((data - mean) / std) ** 4) - 3
    
    def _compute_entropy(self, data: np.ndarray) -> float:
        """Compute entropy of data."""
        if len(data) == 0:
            return 0.0
        
        # Create histogram
        hist, _ = np.histogram(data, bins=256, range=(0, 256))
        hist = hist / np.sum(hist)  # Normalize
        
        # Remove zero probabilities
        hist = hist[hist > 0]
        
        # Compute entropy
        return -np.sum(hist * np.log2(hist))
    
    def create_spectral_visualization(self, spectral_stack: Dict[str, np.ndarray], 
                                    pca_features: Dict[str, Any]) -> np.ndarray:
        """
        Create visualization of spectral features.
        
        Args:
            spectral_stack: Original spectral data
            pca_features: PCA features
            
        Returns:
            Visualization image
        """
        try:
            # Preferred visualization: RGB = (Red, Red-Edge, Green)
            if 'red' in spectral_stack and 'red_edge' in spectral_stack and 'green' in spectral_stack:
                red = spectral_stack['red'].squeeze()
                red_edge = spectral_stack['red_edge'].squeeze()
                green = spectral_stack['green'].squeeze()

                # Normalize each band
                red_norm = self._normalize_band(red)
                red_edge_norm = self._normalize_band(red_edge)
                green_norm = self._normalize_band(green)

                # Create composite (Red, Red-Edge, Green)
                rgb_composite = np.stack([red_norm, red_edge_norm, green_norm], axis=-1)

                return rgb_composite.astype(np.uint8)

            # Fallback visualization: RGB = (NIR, Red, Green)
            if 'red' in spectral_stack and 'green' in spectral_stack and 'nir' in spectral_stack:
                red = spectral_stack['red'].squeeze()
                green = spectral_stack['green'].squeeze()
                nir = spectral_stack['nir'].squeeze()

                # Normalize each band
                red_norm = self._normalize_band(red)
                green_norm = self._normalize_band(green)
                nir_norm = self._normalize_band(nir)

                rgb_composite = np.stack([nir_norm, red_norm, green_norm], axis=-1)

                return rgb_composite.astype(np.uint8)
            
            # Fallback to first PCA component
            elif 'pca_1' in pca_features:
                pca1 = pca_features['pca_1']
                pca1_norm = self._normalize_band(pca1)
                return np.stack([pca1_norm, pca1_norm, pca1_norm], axis=-1).astype(np.uint8)
            
            else:
                # Return empty image
                return np.zeros((100, 100, 3), dtype=np.uint8)
        
        except Exception as e:
            logger.error(f"Spectral visualization creation failed: {e}")
            return np.zeros((100, 100, 3), dtype=np.uint8)
    
    def _normalize_band(self, band: np.ndarray) -> np.ndarray:
        """Normalize band to 0-255 range."""
        valid_data = band[~np.isnan(band)]
        if len(valid_data) == 0:
            return np.zeros_like(band, dtype=np.uint8)
        
        m, M = np.min(valid_data), np.max(valid_data)
        if M > m:
            normalized = ((band - m) / (M - m) * 255).astype(np.uint8)
        else:
            normalized = np.zeros_like(band, dtype=np.uint8)
        
        return normalized