File size: 19,275 Bytes
b4123b8 dd1d7f5 b4123b8 dd1d7f5 b4123b8 dd1d7f5 b4123b8 dd1d7f5 b4123b8 dd1d7f5 b4123b8 dd1d7f5 b4123b8 dd1d7f5 b4123b8 dd1d7f5 b4123b8 dd1d7f5 b4123b8 dd1d7f5 981de0a b4123b8 dd1d7f5 b4123b8 dd1d7f5 5b8812f b4123b8 dd1d7f5 b4123b8 dd1d7f5 b4123b8 dd1d7f5 c170961 5b8812f b4123b8 dd1d7f5 b4123b8 5f6c42c c170961 5b8812f 5f6c42c 93d0941 c170961 b4123b8 dd1d7f5 c170961 dd1d7f5 c170961 dd1d7f5 c170961 5b8812f c170961 dd1d7f5 c170961 dd1d7f5 b4123b8 dd1d7f5 c170961 b4123b8 dd1d7f5 c170961 5b8812f c170961 93d0941 b4123b8 dd1d7f5 1bf989c b4123b8 dd1d7f5 1bf989c 5b8812f 2ff67cd 1bf989c 2ff67cd 93d0941 668a993 b4123b8 dd1d7f5 b4123b8 dd1d7f5 c170961 b4123b8 c170961 b4123b8 c170961 b4123b8 dd1d7f5 b4123b8 4c1c4a7 b4123b8 5b8812f 2ff67cd 69cba14 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 |
"""
Minimal output manager for demo (saves only 7 required images).
"""
import os
import numpy as np
import cv2
import matplotlib
if os.environ.get('MPLBACKEND') is None:
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from pathlib import Path
from typing import Dict, Any
import logging
logger = logging.getLogger(__name__)
class OutputManager:
"""Minimal output manager for demo."""
def __init__(self, output_folder: str, settings: Any):
"""Initialize output manager."""
self.output_folder = Path(output_folder)
self.settings = settings
try:
self.minimal_demo: bool = bool(int(os.environ.get('MINIMAL_DEMO', '0')))
except Exception:
self.minimal_demo = False
self.output_folder.mkdir(parents=True, exist_ok=True)
def create_output_directories(self) -> None:
"""Create output directories."""
self.output_folder.mkdir(parents=True, exist_ok=True)
def save_plant_results(self, plant_key: str, plant_data: Dict[str, Any]) -> None:
"""Save minimal demo outputs only."""
if not self.minimal_demo:
logger.warning("OutputManager configured for minimal demo only")
return
self._save_minimal_demo_outputs(plant_data)
def _save_input_image_only(self, plant_key: str, plant_data: Dict[str, Any]) -> None:
"""Quick save of just the input image for immediate display."""
results_dir = self.output_folder / 'results'
results_dir.mkdir(parents=True, exist_ok=True)
try:
norm_input = plant_data.get('normalized_input')
if isinstance(norm_input, np.ndarray):
vis = norm_input
if vis.ndim == 2:
vis_u8 = self._normalize_to_uint8(vis.astype(np.float64))
vis_rgb = cv2.cvtColor(vis_u8, cv2.COLOR_GRAY2RGB)
elif vis.ndim == 3 and vis.shape[2] == 3:
if vis.dtype != np.uint8:
vis_u8 = self._normalize_to_uint8(vis.astype(np.float64))
else:
vis_u8 = vis
# Assume BGR
vis_rgb = cv2.cvtColor(vis_u8, cv2.COLOR_BGR2RGB)
else:
vis_u8 = self._normalize_to_uint8(vis.astype(np.float64))
vis_rgb = cv2.cvtColor(vis_u8, cv2.COLOR_GRAY2RGB)
titled = self._add_title_banner(vis_rgb, 'Input Image')
cv2.imwrite(str(results_dir / 'input_image.png'), titled)
except Exception as e:
logger.error(f"Failed to save input image: {e}")
def _save_minimal_demo_outputs(self, plant_data: Dict[str, Any]) -> None:
"""Save only the 7 required images."""
results_dir = self.output_folder / 'results'
veg_dir = self.output_folder / 'Vegetation_indices_images'
tex_dir = self.output_folder / 'texture_output'
results_dir.mkdir(parents=True, exist_ok=True)
veg_dir.mkdir(parents=True, exist_ok=True)
tex_dir.mkdir(parents=True, exist_ok=True)
# 1. Mask
try:
mask = plant_data.get('mask')
if isinstance(mask, np.ndarray):
titled = self._add_title_banner(mask, 'Mask')
cv2.imwrite(str(results_dir / 'mask.png'), titled)
except Exception as e:
logger.error(f"Failed to save mask: {e}")
# 2. Overlay
try:
base_image = plant_data.get('composite')
mask = plant_data.get('mask')
if isinstance(base_image, np.ndarray) and isinstance(mask, np.ndarray):
overlay = self._create_overlay(base_image, mask)
# Convert BGR→RGB for correct viewing in standard image viewers
overlay_rgb = cv2.cvtColor(overlay, cv2.COLOR_BGR2RGB)
titled = self._add_title_banner(overlay_rgb, 'Segmentation Overlay')
cv2.imwrite(str(results_dir / 'overlay.png'), titled)
except Exception as e:
logger.error(f"Failed to save overlay: {e}")
# 2b. Composite (input to segmentation)
try:
base_image = plant_data.get('composite')
if isinstance(base_image, np.ndarray):
# Ensure uint8
if base_image.dtype != np.uint8:
base_image = self._normalize_to_uint8(base_image.astype(np.float64))
# Convert BGR→RGB for human viewing
comp_rgb = cv2.cvtColor(base_image, cv2.COLOR_BGR2RGB)
titled = self._add_title_banner(comp_rgb, 'Composite (Segmentation Input)')
cv2.imwrite(str(results_dir / 'composite.png'), titled)
except Exception as e:
logger.error(f"Failed to save composite: {e}")
# 2c. Normalized input image visualization
try:
norm_input = plant_data.get('normalized_input')
if isinstance(norm_input, np.ndarray):
vis = norm_input
if vis.ndim == 2:
vis_u8 = self._normalize_to_uint8(vis.astype(np.float64))
vis_rgb = cv2.cvtColor(vis_u8, cv2.COLOR_GRAY2RGB)
elif vis.ndim == 3 and vis.shape[2] == 3:
if vis.dtype != np.uint8:
vis_u8 = self._normalize_to_uint8(vis.astype(np.float64))
else:
vis_u8 = vis
# Assume BGR
vis_rgb = cv2.cvtColor(vis_u8, cv2.COLOR_BGR2RGB)
else:
vis_u8 = self._normalize_to_uint8(vis.astype(np.float64))
vis_rgb = cv2.cvtColor(vis_u8, cv2.COLOR_GRAY2RGB)
titled = self._add_title_banner(vis_rgb, 'Input Image')
cv2.imwrite(str(results_dir / 'input_image.png'), titled)
except Exception as e:
logger.error(f"Failed to save normalized input image: {e}")
# 3-5. Vegetation indices (NDVI, GNDVI, SAVI)
try:
veg = plant_data.get('vegetation_indices', {})
for name in ['NDVI', 'GNDVI', 'SAVI']:
data = veg.get(name, {})
values = data.get('values') if isinstance(data, dict) else None
if isinstance(values, np.ndarray) and values.size > 0:
try:
# Colormap with colorbar similar to src: use matplotlib savefig
cmap = cm.RdYlGn
# Value ranges
if name in ['NDVI', 'GNDVI']:
vmin, vmax = (-1, 1)
else:
vmin, vmax = (0, 1)
masked = np.ma.masked_invalid(values.astype(np.float64))
fig, ax = plt.subplots(figsize=(5, 5))
ax.set_axis_off()
ax.set_facecolor('white')
im = ax.imshow(masked, cmap=cmap, vmin=vmin, vmax=vmax)
ax.set_title(f"{name}", fontsize=12, fontweight='bold', pad=8)
# add colorbar
cbar = fig.colorbar(im, ax=ax, fraction=0.046, pad=0.04)
cbar.ax.tick_params(labelsize=8)
plt.tight_layout()
plt.savefig(veg_dir / f"{name.lower()}.png", dpi=120, bbox_inches='tight')
plt.close(fig)
except Exception as e:
logger.error(f"Failed to save {name}: {e}")
except Exception as e:
logger.error(f"Failed to save vegetation indices: {e}")
# 6. Texture features: ONLY LBP on green band
try:
tex = plant_data.get('texture_features', {})
green_band = tex.get('green', {})
feats = green_band.get('features', {})
lbp = feats.get('lbp')
if isinstance(lbp, np.ndarray) and lbp.size > 0:
try:
img = lbp.astype(np.float64)
fig, ax = plt.subplots(figsize=(5, 5))
ax.set_axis_off()
ax.set_facecolor('white')
im = ax.imshow(img, cmap='gray', vmin=0, vmax=255)
ax.set_title('Texture: LBP (Green Band)', fontsize=12, fontweight='bold', pad=8)
cbar = fig.colorbar(im, ax=ax, fraction=0.046, pad=0.04)
cbar.ax.tick_params(labelsize=8)
plt.tight_layout()
plt.savefig(tex_dir / 'lbp_green.png', dpi=120, bbox_inches='tight')
plt.close(fig)
except Exception as e:
logger.error(f"Failed to save LBP with colorbar: {e}")
# HOG visualization
hog = feats.get('hog')
if isinstance(hog, np.ndarray) and hog.size > 0:
try:
img = hog.astype(np.float64)
fig, ax = plt.subplots(figsize=(5, 5))
ax.set_axis_off()
ax.set_facecolor('white')
im = ax.imshow(img, cmap='inferno', vmin=0, vmax=255)
ax.set_title('Texture: HOG (Green Band)', fontsize=12, fontweight='bold', pad=8)
cbar = fig.colorbar(im, ax=ax, fraction=0.046, pad=0.04)
cbar.ax.tick_params(labelsize=8)
plt.tight_layout()
plt.savefig(tex_dir / 'hog_green.png', dpi=120, bbox_inches='tight')
plt.close(fig)
except Exception as e:
logger.error(f"Failed to save HOG with colorbar: {e}")
# Lacunarity L1 visualization
lac1 = feats.get('lac1')
if isinstance(lac1, np.ndarray) and lac1.size > 0:
try:
img = lac1.astype(np.float64)
fig, ax = plt.subplots(figsize=(5, 5))
ax.set_axis_off()
ax.set_facecolor('white')
im = ax.imshow(img, cmap='plasma', vmin=0, vmax=255)
ax.set_title('Texture: Lacunarity L1 (Green Band)', fontsize=12, fontweight='bold', pad=8)
cbar = fig.colorbar(im, ax=ax, fraction=0.046, pad=0.04)
cbar.ax.tick_params(labelsize=8)
plt.tight_layout()
plt.savefig(tex_dir / 'lac1_green.png', dpi=120, bbox_inches='tight')
plt.close(fig)
except Exception as e:
logger.error(f"Failed to save Lacunarity L1 with colorbar: {e}")
except Exception as e:
logger.error(f"Failed to save texture: {e}")
# 9. Plant Morphology analysis
try:
morph = plant_data.get('morphology_features', {})
images = morph.get('images', {})
size_img = images.get('size_analysis')
if isinstance(size_img, np.ndarray) and size_img.size > 0:
titled = self._add_title_banner(size_img, 'Plant Morphology')
cv2.imwrite(str(results_dir / 'size.size_analysis.png'), titled)
else:
# Fallback: synthesize a simple size analysis from the mask if available
mask_for_size = plant_data.get('mask')
base_img_for_size = plant_data.get('composite')
if isinstance(mask_for_size, np.ndarray) and mask_for_size.size > 0:
synthesized = self._create_size_analysis_from_mask(mask_for_size, base_img_for_size)
titled = self._add_title_banner(synthesized, 'Plant Morphology')
cv2.imwrite(str(results_dir / 'size.size_analysis.png'), titled)
# YOLO disabled for speed - skip saving yolo_tips.png
except Exception as e:
logger.error(f"Failed to save size analysis: {e}")
def _create_overlay(self, image: np.ndarray, mask: np.ndarray) -> np.ndarray:
"""Create green overlay on brightened composite, following src pipeline style."""
if mask is None:
return image
if mask.shape[:2] != image.shape[:2]:
mask = cv2.resize(mask.astype(np.uint8), (image.shape[1], image.shape[0]),
interpolation=cv2.INTER_NEAREST)
binary = (mask.astype(np.int32) > 0).astype(np.uint8) * 255
base = image
if base.dtype != np.uint8:
base = self._normalize_to_uint8(base.astype(np.float64))
bright = cv2.convertScaleAbs(base, alpha=1.2, beta=15)
green_overlay = bright.copy()
green_overlay[binary == 255] = (0, 255, 0)
blended = cv2.addWeighted(bright, 1.0, green_overlay, 0.5, 0)
return blended
def _normalize_to_uint8(self, arr: np.ndarray) -> np.ndarray:
"""Normalize to uint8."""
arr = np.nan_to_num(arr, nan=0.0, posinf=0.0, neginf=0.0)
ptp = np.ptp(arr)
if ptp > 0:
normalized = (arr - arr.min()) / (ptp + 1e-6) * 255
else:
normalized = np.zeros_like(arr)
return np.clip(normalized, 0, 255).astype(np.uint8)
def _add_title_banner(self, image: np.ndarray, title: str) -> np.ndarray:
"""Add a top banner with centered title text to an image using OpenCV.
Supports grayscale or color images; returns a BGR image.
"""
if image is None or image.size == 0:
return image
# Ensure 3-channel BGR for drawing
if image.ndim == 2:
base_bgr = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)
elif image.ndim == 3 and image.shape[2] == 3:
base_bgr = image.copy()
elif image.ndim == 3 and image.shape[2] == 4:
base_bgr = cv2.cvtColor(image, cv2.COLOR_BGRA2BGR)
else:
# Fallback: normalize to uint8 then convert to BGR
norm = self._normalize_to_uint8(image.astype(np.float64))
base_bgr = cv2.cvtColor(norm, cv2.COLOR_GRAY2BGR)
h, w = base_bgr.shape[:2]
banner_height = max(30, int(0.08 * h))
banner = np.full((banner_height, w, 3), (245, 245, 245), dtype=np.uint8)
# Compose banner + image
composed = np.vstack([banner, base_bgr])
# Put centered title text
font = cv2.FONT_HERSHEY_SIMPLEX
font_scale = max(0.5, min(1.0, w / 800.0))
thickness = 1
text = str(title)
(tw, th), baseline = cv2.getTextSize(text, font, font_scale, thickness)
x = max(5, (w - tw) // 2)
y = (banner_height + th) // 2
# Slight shadow for readability
cv2.putText(composed, text, (x+1, y+1), font, font_scale, (0, 0, 0), thickness+1, cv2.LINE_AA)
cv2.putText(composed, text, (x, y), font, font_scale, (0, 80, 0), thickness+1, cv2.LINE_AA)
return composed
def _create_size_analysis_from_mask(self, mask: np.ndarray, base_image: Any = None) -> np.ndarray:
"""Create a simple size analysis visualization from a binary mask.
Draws contours and prints pixel area. If base_image is provided, overlays on it; otherwise uses a white canvas.
"""
if mask is None or mask.size == 0:
return np.zeros((1, 1, 3), dtype=np.uint8)
# Prepare base image
if isinstance(base_image, np.ndarray) and base_image.size > 0:
img = base_image
if img.dtype != np.uint8:
img = self._normalize_to_uint8(img.astype(np.float64))
if img.ndim == 2:
base_bgr = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
elif img.ndim == 3 and img.shape[2] == 3:
base_bgr = img.copy()
elif img.ndim == 3 and img.shape[2] == 4:
base_bgr = cv2.cvtColor(img, cv2.COLOR_BGRA2BGR)
else:
norm = self._normalize_to_uint8(img.astype(np.float64))
base_bgr = cv2.cvtColor(norm, cv2.COLOR_GRAY2BGR)
else:
h, w = mask.shape[:2]
base_bgr = np.full((h, w, 3), 255, dtype=np.uint8)
# Ensure binary mask
if mask.ndim == 3 and mask.shape[2] == 3:
gray = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
else:
gray = mask.astype(np.uint8)
_, bin_mask = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY)
# Contours and area
contours, _ = cv2.findContours(bin_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(base_bgr, contours, -1, (0, 0, 255), 1)
area_px = int(cv2.countNonZero(bin_mask))
# Bounding box for the largest contour
if contours:
largest = max(contours, key=cv2.contourArea)
x, y, w, h = cv2.boundingRect(largest)
cv2.rectangle(base_bgr, (x, y), (x + w, y + h), (255, 0, 0), 1)
# Put area text
cv2.putText(base_bgr, f"Area: {area_px} px", (10, 24), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2, cv2.LINE_AA)
return base_bgr
def _create_fallback_yolo_panel(self, mask: Any, base_image: Any = None) -> np.ndarray:
"""Create a fallback YOLO tips panel when detections are unavailable.
Uses the composite image if available; otherwise, creates a white canvas sized to mask.
"""
try:
if isinstance(base_image, np.ndarray) and base_image.size > 0:
img = base_image
if img.dtype != np.uint8:
img = self._normalize_to_uint8(img.astype(np.float64))
if img.ndim == 2:
panel = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
elif img.ndim == 3 and img.shape[2] == 3:
panel = img.copy()
elif img.ndim == 3 and img.shape[2] == 4:
panel = cv2.cvtColor(img, cv2.COLOR_BGRA2BGR)
else:
norm = self._normalize_to_uint8(img.astype(np.float64))
panel = cv2.cvtColor(norm, cv2.COLOR_GRAY2BGR)
else:
if isinstance(mask, np.ndarray) and mask.size > 0:
h, w = mask.shape[:2]
else:
h, w = 256, 256
panel = np.full((h, w, 3), 255, dtype=np.uint8)
# Optionally show mask centroid as hint
try:
if isinstance(mask, np.ndarray) and mask.size > 0:
m = mask
if m.ndim == 3:
m = cv2.cvtColor(m, cv2.COLOR_BGR2GRAY)
_, bin_m = cv2.threshold(m.astype(np.uint8), 0, 255, cv2.THRESH_BINARY)
moments = cv2.moments(bin_m)
if moments['m00'] != 0:
cx = int(moments['m10'] / moments['m00'])
cy = int(moments['m01'] / moments['m00'])
cv2.drawMarker(panel, (cx, cy), (0, 0, 255), markerType=cv2.MARKER_TILTED_CROSS, markerSize=12, thickness=2)
except Exception:
pass
return panel
except Exception:
return np.full((256, 256, 3), 255, dtype=np.uint8) |