Fahimeh Orvati Nia
.
31ddfa7
raw
history blame
2.88 kB
"""
Minimal segmentation manager.
"""
import numpy as np
import cv2
import torch
from PIL import Image
from torchvision import transforms
from transformers import AutoModelForImageSegmentation
from typing import Optional
import logging
logger = logging.getLogger(__name__)
class SegmentationManager:
"""Minimal BRIA segmentation."""
def __init__(self, model_name: str = "briaai/RMBG-2.0", device: str = "auto",
threshold: float = 0.5, trust_remote_code: bool = True,
cache_dir: Optional[str] = None, local_files_only: bool = False):
"""Initialize segmentation."""
self.model_name = model_name
self.threshold = threshold
self.device = "cuda" if device == "auto" and torch.cuda.is_available() else device
# Get HF token from environment (set as Space secret)
import os
hf_token = os.environ.get("HF_TOKEN")
logger.info(f"Loading BRIA model: {model_name}")
self.model = AutoModelForImageSegmentation.from_pretrained(
model_name,
trust_remote_code=trust_remote_code,
cache_dir=cache_dir if cache_dir else None,
local_files_only=local_files_only,
token=hf_token,
).eval().to(self.device)
self.transform = transforms.Compose([
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
logger.info("BRIA model loaded")
def segment_image_soft(self, image: np.ndarray) -> np.ndarray:
"""Segment image and return soft mask [0,1]."""
try:
logger.info(f"Segmentation: input image shape={image.shape}, dtype={image.dtype}")
rgb_image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(rgb_image)
input_tensor = self.transform(pil_image).unsqueeze(0).to(self.device)
try:
logger.info(f"Segmentation: tensor shape={input_tensor.shape}, device={self.device}")
except Exception:
pass
with torch.no_grad():
preds = self.model(input_tensor)[-1].sigmoid().cpu()[0].squeeze(0).numpy()
logger.info(f"Segmentation: raw preds shape={preds.shape}, dtype={preds.dtype}")
original_size = (image.shape[1], image.shape[0])
soft_mask = cv2.resize(preds.astype(np.float32), original_size, interpolation=cv2.INTER_LINEAR)
logger.info(f"Segmentation: resized soft_mask shape={soft_mask.shape}, dtype={soft_mask.dtype}")
return np.clip(soft_mask, 0.0, 1.0)
except Exception as e:
logger.error(f"Segmentation failed: {e}")
return np.zeros(image.shape[:2], dtype=np.float32)