Fahimeh Orvati Nia
update
a28653b
raw
history blame
7.34 kB
import gradio as gr
import tempfile
from pathlib import Path
from wrapper import run_pipeline_on_image
from PIL import Image
# Precomputed demo outputs inside the repo (placed by you once)
PRECOMPUTED_DIR = (Path(__file__).resolve().parent / "precomputed_demo")
##add the process function
def process(file_path):
if not file_path:
return None, None, None, None, None, [], ""
with tempfile.TemporaryDirectory() as tmpdir:
src = Path(file_path)
ext = src.suffix.lstrip('.') or 'tif'
img_path = Path(tmpdir) / f"input.{ext}"
try:
# Copy raw uploaded bytes
img_bytes = src.read_bytes()
img_path.write_bytes(img_bytes)
except Exception:
# Fallback: save via PIL if direct copy fails
Image.open(src).save(img_path)
# Run the full sorghum pipeline
outputs = run_pipeline_on_image(str(img_path), tmpdir, save_artifacts=True)
def load_pil(path_str):
try:
if not path_str:
return None
im = Image.open(path_str)
copied = im.copy()
im.close()
return copied
except Exception:
return None
composite = load_pil(outputs.get('Composite'))
overlay = load_pil(outputs.get('Overlay'))
mask = load_pil(outputs.get('Mask'))
input_img = load_pil(outputs.get('InputImage'))
size_img = load_pil(str(Path(tmpdir) / 'results/size.size_analysis.png'))
yolo_img = load_pil(str(Path(tmpdir) / 'results/yolo_tips.png'))
# Texture images (green band)
lbp_path = Path(tmpdir) / 'texture_output/lbp_green.png'
hog_path = Path(tmpdir) / 'texture_output/hog_green.png'
lac1_path = Path(tmpdir) / 'texture_output/lac1_green.png'
texture_img = load_pil(str(lbp_path)) if lbp_path.exists() else None
hog_img = load_pil(str(hog_path)) if hog_path.exists() else None
lac1_img = load_pil(str(lac1_path)) if lac1_path.exists() else None
# Vegetation indices
order = ['NDVI', 'GNDVI', 'SAVI']
gallery_items = [load_pil(outputs[k]) for k in order if k in outputs]
stats_text = outputs.get('StatsText', '')
# Output order matches UI components defined below
# Row 1: Input image (slightly larger)
# Row 2: Composite, Mask, Overlay
# Row 3: Texture images (LBP, HOG, Lac1)
# Row 4: Vegetation indices (gallery)
# Row 5: Morphology Size and YOLO Tips
# Final: Stats table
return (
input_img,
composite,
mask,
overlay,
texture_img,
hog_img,
lac1_img,
gallery_items,
size_img,
yolo_img,
stats_text,
)
def _load_pil(path: Path):
try:
if not path or not path.exists():
return None
im = Image.open(path)
out = im.copy()
im.close()
return out
except Exception:
return None
def _first_existing(paths):
for p in paths:
if p and p.exists():
return p
return None
def load_precomputed():
base = PRECOMPUTED_DIR
if not base.exists():
return None, None, None, None, None, None, None, [], None, None, ""
# Common subdirs
results = base / "results"
veg = base / "Vegetation_indices_images"
tex = base / "texture_output"
input_img = _load_pil(_first_existing([
base / "input_image.png",
base / "input_image.tif",
base / "input.png",
]))
composite = _load_pil(_first_existing([
results / "composite.png",
]))
mask = _load_pil(results / "mask.png")
overlay = _load_pil(results / "overlay.png")
texture_img = _load_pil(_first_existing([
tex / "lbp_green.png",
tex / "lbp.png",
]))
hog_img = _load_pil(_first_existing([
tex / "hog_green.png",
tex / "hog.png",
]))
lac1_img = _load_pil(_first_existing([
tex / "lac1_green.png",
tex / "lacunarity.png",
]))
# Vegetation gallery in order
veg_order = ["ndvi.png", "gndvi.png", "savi.png"]
gallery_items = []
for fname in veg_order:
p = veg / fname
img = _load_pil(p)
if img is not None:
gallery_items.append(img)
size_img = _load_pil(results / "size.size_analysis.png")
yolo_img = _load_pil(results / "yolo_tips.png")
stats_txt_path = _first_existing([
base / "stats.txt",
results / "stats.txt",
])
stats_text = ""
if stats_txt_path and stats_txt_path.exists():
try:
stats_text = stats_txt_path.read_text()
except Exception:
stats_text = ""
return (
input_img,
composite,
mask,
overlay,
texture_img,
hog_img,
lac1_img,
gallery_items,
size_img,
yolo_img,
stats_text,
)
with gr.Blocks() as demo:
gr.Markdown("# 🌿 Automated Plant Analysis Demo")
gr.Markdown("Upload a sorghum plant image (TIFF preferred) to compute and visualize composite, mask, overlay, texture (LBP), vegetation indices, and statistics.")
with gr.Row():
with gr.Column():
# Use File input to preserve raw TIFFs
inp = gr.File(
type="filepath",
file_types=[".tif", ".tiff", ".png", ".jpg"],
label="Upload Image"
)
run = gr.Button("Run Pipeline", variant="primary")
# Row 1: input image, slightly larger
with gr.Row():
input_img = gr.Image(type="pil", label="Input Image", interactive=False, height=380)
# Row 2: composite, mask, overlay
with gr.Row():
composite_img = gr.Image(type="pil", label="Composite (Segmentation Input)", interactive=False)
mask_img = gr.Image(type="pil", label="Mask", interactive=False)
overlay_img = gr.Image(type="pil", label="Segmentation Overlay", interactive=False)
# Row 3: textures
with gr.Row():
texture_img = gr.Image(type="pil", label="Texture LBP (Green Band)", interactive=False)
hog_img = gr.Image(type="pil", label="Texture HOG (Green Band)", interactive=False)
lac1_img = gr.Image(type="pil", label="Texture Lac1 (Green Band)", interactive=False)
# Row 4: vegetation indices
gallery = gr.Gallery(label="Vegetation Indices", columns=3, height="auto")
# Row 5: morphology and YOLO tips
with gr.Row():
size_img = gr.Image(type="pil", label="Morphology Size", interactive=False)
yolo_img = gr.Image(type="pil", label="YOLO Tips", interactive=False)
# Final: statistics table
stats = gr.Textbox(label="Statistics", lines=4)
run.click(
process,
inputs=inp,
outputs=[
input_img,
composite_img,
mask_img,
overlay_img,
texture_img,
hog_img,
lac1_img,
gallery,
size_img,
yolo_img,
stats,
]
)
# No preloading: start with empty UI until the user runs the pipeline
if __name__ == "__main__":
demo.launch()