Fahimeh Orvati Nia
commited on
Commit
·
7c31b44
1
Parent(s):
88a828f
- app.py +8 -9
- sorghum_pipeline/pipeline.py +57 -36
app.py
CHANGED
|
@@ -2,16 +2,14 @@ import gradio as gr
|
|
| 2 |
import tempfile
|
| 3 |
from pathlib import Path
|
| 4 |
from wrapper import run_pipeline_on_image
|
| 5 |
-
import numpy as np
|
| 6 |
from PIL import Image
|
| 7 |
-
from itertools import product
|
| 8 |
|
| 9 |
-
def process(
|
| 10 |
-
if not
|
| 11 |
return None, None, None, None, [], ""
|
| 12 |
with tempfile.TemporaryDirectory() as tmpdir:
|
| 13 |
-
#
|
| 14 |
-
src = Path(
|
| 15 |
ext = src.suffix.lstrip('.') or 'tif'
|
| 16 |
img_path = Path(tmpdir) / f"input.{ext}"
|
| 17 |
try:
|
|
@@ -20,6 +18,7 @@ def process(image_path):
|
|
| 20 |
except Exception:
|
| 21 |
# Fallback: save via PIL if direct copy fails
|
| 22 |
Image.open(src).save(img_path)
|
|
|
|
| 23 |
outputs = run_pipeline_on_image(str(img_path), tmpdir, save_artifacts=True)
|
| 24 |
|
| 25 |
def load_pil(path_str):
|
|
@@ -27,7 +26,6 @@ def process(image_path):
|
|
| 27 |
if not path_str:
|
| 28 |
return None
|
| 29 |
im = Image.open(path_str)
|
| 30 |
-
# im = im.convert('RGB')
|
| 31 |
copied = im.copy()
|
| 32 |
im.close()
|
| 33 |
return copied
|
|
@@ -52,7 +50,8 @@ with gr.Blocks() as demo:
|
|
| 52 |
|
| 53 |
with gr.Row():
|
| 54 |
with gr.Column():
|
| 55 |
-
|
|
|
|
| 56 |
run = gr.Button("Run Pipeline", variant="primary")
|
| 57 |
|
| 58 |
with gr.Row():
|
|
@@ -70,4 +69,4 @@ with gr.Blocks() as demo:
|
|
| 70 |
run.click(process, inputs=inp, outputs=[size_img, composite_img, mask_img, overlay_img, texture_img, gallery, stats])
|
| 71 |
|
| 72 |
if __name__ == "__main__":
|
| 73 |
-
demo.launch()
|
|
|
|
| 2 |
import tempfile
|
| 3 |
from pathlib import Path
|
| 4 |
from wrapper import run_pipeline_on_image
|
|
|
|
| 5 |
from PIL import Image
|
|
|
|
| 6 |
|
| 7 |
+
def process(file_obj):
|
| 8 |
+
if not file_obj:
|
| 9 |
return None, None, None, None, [], ""
|
| 10 |
with tempfile.TemporaryDirectory() as tmpdir:
|
| 11 |
+
# file_obj is a dict when using gr.File(type="file")
|
| 12 |
+
src = Path(file_obj.name)
|
| 13 |
ext = src.suffix.lstrip('.') or 'tif'
|
| 14 |
img_path = Path(tmpdir) / f"input.{ext}"
|
| 15 |
try:
|
|
|
|
| 18 |
except Exception:
|
| 19 |
# Fallback: save via PIL if direct copy fails
|
| 20 |
Image.open(src).save(img_path)
|
| 21 |
+
|
| 22 |
outputs = run_pipeline_on_image(str(img_path), tmpdir, save_artifacts=True)
|
| 23 |
|
| 24 |
def load_pil(path_str):
|
|
|
|
| 26 |
if not path_str:
|
| 27 |
return None
|
| 28 |
im = Image.open(path_str)
|
|
|
|
| 29 |
copied = im.copy()
|
| 30 |
im.close()
|
| 31 |
return copied
|
|
|
|
| 50 |
|
| 51 |
with gr.Row():
|
| 52 |
with gr.Column():
|
| 53 |
+
# Use gr.File instead of gr.Image so TIFF is preserved
|
| 54 |
+
inp = gr.File(type="file", file_types=[".tif", ".tiff", ".png", ".jpg"], label="Upload Image")
|
| 55 |
run = gr.Button("Run Pipeline", variant="primary")
|
| 56 |
|
| 57 |
with gr.Row():
|
|
|
|
| 69 |
run.click(process, inputs=inp, outputs=[size_img, composite_img, mask_img, overlay_img, texture_img, gallery, stats])
|
| 70 |
|
| 71 |
if __name__ == "__main__":
|
| 72 |
+
demo.launch()
|
sorghum_pipeline/pipeline.py
CHANGED
|
@@ -46,46 +46,61 @@ class SorghumPipeline:
|
|
| 46 |
def run(self, single_image_path: str) -> Dict[str, Any]:
|
| 47 |
"""Run pipeline on single image."""
|
| 48 |
logger.info("Processing single image...")
|
| 49 |
-
|
| 50 |
-
import time
|
| 51 |
-
|
| 52 |
-
start = time.perf_counter()
|
| 53 |
-
import imghdr
|
| 54 |
-
import tifffile
|
| 55 |
-
import cv2
|
| 56 |
from PIL import Image
|
| 57 |
|
|
|
|
|
|
|
|
|
|
| 58 |
kind = imghdr.what(single_image_path)
|
|
|
|
| 59 |
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
else:
|
| 65 |
arr = cv2.imread(single_image_path, cv2.IMREAD_UNCHANGED)
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
plants = {
|
| 71 |
"demo": {
|
| 72 |
"raw_image": (img, Path(single_image_path).name),
|
| 73 |
"plant_name": "demo",
|
| 74 |
}
|
| 75 |
}
|
| 76 |
-
|
| 77 |
# Process: composite → segment → features → save
|
| 78 |
plants = self.preprocessor.create_composites(plants)
|
| 79 |
plants = self._segment(plants)
|
| 80 |
plants = self._extract_features(plants)
|
| 81 |
self.output_manager.create_output_directories()
|
| 82 |
-
|
| 83 |
for key, pdata in plants.items():
|
| 84 |
self.output_manager.save_plant_results(key, pdata)
|
| 85 |
-
|
| 86 |
elapsed = time.perf_counter() - start
|
| 87 |
logger.info(f"Completed in {elapsed:.2f}s")
|
| 88 |
-
|
| 89 |
return {"plants": plants, "timing": elapsed}
|
| 90 |
|
| 91 |
def _segment(self, plants: Dict[str, Any]) -> Dict[str, Any]:
|
|
@@ -101,60 +116,66 @@ class SorghumPipeline:
|
|
| 101 |
return plants
|
| 102 |
|
| 103 |
def _extract_features(self, plants: Dict[str, Any]) -> Dict[str, Any]:
|
| 104 |
-
"""Extract features
|
| 105 |
for key, pdata in plants.items():
|
| 106 |
composite = pdata['composite']
|
| 107 |
mask = pdata.get('mask')
|
| 108 |
|
| 109 |
-
# Texture:
|
| 110 |
pdata['texture_features'] = {}
|
| 111 |
-
green_band = None
|
| 112 |
spectral = pdata.get('spectral_stack', {})
|
| 113 |
if 'green' in spectral:
|
| 114 |
-
green_band = spectral['green']
|
|
|
|
|
|
|
|
|
|
| 115 |
if mask is not None:
|
| 116 |
valid = np.where(mask > 0, green_band, np.nan)
|
| 117 |
else:
|
| 118 |
valid = green_band
|
| 119 |
-
|
| 120 |
-
v = valid.
|
| 121 |
-
v = np.nan_to_num(v, nan=np.nanmin(v))
|
| 122 |
m, M = np.min(v), np.max(v)
|
| 123 |
denom = (M - m) if (M - m) > 1e-6 else 1.0
|
| 124 |
gray8 = ((v - m) / denom * 255.0).astype(np.uint8)
|
|
|
|
| 125 |
lbp_map = self.texture_extractor.extract_lbp(gray8)
|
| 126 |
pdata['texture_features'] = {'green': {'features': {'lbp': lbp_map}}}
|
| 127 |
|
| 128 |
-
# Vegetation
|
| 129 |
-
spectral = pdata.get('spectral_stack', {})
|
| 130 |
if spectral and mask is not None:
|
| 131 |
pdata['vegetation_indices'] = self._compute_vegetation(spectral, mask)
|
| 132 |
else:
|
| 133 |
pdata['vegetation_indices'] = {}
|
| 134 |
-
|
| 135 |
-
#
|
| 136 |
-
# pdata['morphology_features'] = self.morphology_extractor.extract_morphology_features(composite, mask)
|
| 137 |
pdata['morphology_features'] = {}
|
| 138 |
|
| 139 |
return plants
|
| 140 |
|
| 141 |
def _compute_vegetation(self, spectral: Dict[str, np.ndarray], mask: np.ndarray) -> Dict[str, Any]:
|
| 142 |
-
"""Compute NDVI,
|
| 143 |
out = {}
|
| 144 |
for name in ("NDVI", "GNDVI", "SAVI"):
|
| 145 |
bands = self.vegetation_extractor.index_bands.get(name, [])
|
| 146 |
if not all(b in spectral for b in bands):
|
| 147 |
continue
|
| 148 |
-
|
| 149 |
-
arrays = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
values = self.vegetation_extractor.index_formulas[name](*arrays).astype(np.float64)
|
| 151 |
binary_mask = (mask > 0)
|
| 152 |
masked_values = np.where(binary_mask, values, np.nan)
|
| 153 |
valid = masked_values[~np.isnan(masked_values)]
|
| 154 |
-
|
| 155 |
stats = {
|
| 156 |
'mean': float(np.mean(valid)) if valid.size else 0.0,
|
| 157 |
'std': float(np.std(valid)) if valid.size else 0.0,
|
| 158 |
}
|
| 159 |
out[name] = {'values': masked_values, 'statistics': stats}
|
| 160 |
-
return out
|
|
|
|
| 46 |
def run(self, single_image_path: str) -> Dict[str, Any]:
|
| 47 |
"""Run pipeline on single image."""
|
| 48 |
logger.info("Processing single image...")
|
| 49 |
+
|
| 50 |
+
import time, imghdr, tifffile
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
from PIL import Image
|
| 52 |
|
| 53 |
+
start = time.perf_counter()
|
| 54 |
+
|
| 55 |
+
# --- Load image with TIFF preference ---
|
| 56 |
kind = imghdr.what(single_image_path)
|
| 57 |
+
suffix = Path(single_image_path).suffix.lower()
|
| 58 |
|
| 59 |
+
arr = None
|
| 60 |
+
if kind == "tiff" or suffix in [".tif", ".tiff"]:
|
| 61 |
+
try:
|
| 62 |
+
arr = tifffile.imread(single_image_path)
|
| 63 |
+
logger.info(f"Loaded TIFF: shape={arr.shape}, dtype={arr.dtype}")
|
| 64 |
+
except Exception as e:
|
| 65 |
+
logger.warning(f"tifffile failed ({e}), falling back to cv2")
|
| 66 |
+
arr = cv2.imread(single_image_path, cv2.IMREAD_UNCHANGED)
|
| 67 |
+
logger.info(f"Fallback read: shape={arr.shape}, dtype={arr.dtype}")
|
| 68 |
else:
|
| 69 |
arr = cv2.imread(single_image_path, cv2.IMREAD_UNCHANGED)
|
| 70 |
+
logger.info(f"Loaded non-TIFF: shape={arr.shape}, dtype={arr.dtype}")
|
| 71 |
+
|
| 72 |
+
# --- Normalize array shape ---
|
| 73 |
+
if arr is None:
|
| 74 |
+
raise ValueError(f"Could not read image: {single_image_path}")
|
| 75 |
+
if arr.ndim > 3:
|
| 76 |
+
arr = arr[..., 0] # drop extra dimension
|
| 77 |
+
if arr.ndim == 3 and arr.shape[-1] == 1:
|
| 78 |
+
arr = arr[..., 0] # squeeze singleton
|
| 79 |
+
|
| 80 |
+
logger.info(f"DEBUG normalized input: shape={arr.shape}, dtype={arr.dtype}")
|
| 81 |
+
|
| 82 |
+
# Wrap into PIL image for downstream pipeline
|
| 83 |
+
img = Image.fromarray(arr)
|
| 84 |
+
|
| 85 |
plants = {
|
| 86 |
"demo": {
|
| 87 |
"raw_image": (img, Path(single_image_path).name),
|
| 88 |
"plant_name": "demo",
|
| 89 |
}
|
| 90 |
}
|
| 91 |
+
|
| 92 |
# Process: composite → segment → features → save
|
| 93 |
plants = self.preprocessor.create_composites(plants)
|
| 94 |
plants = self._segment(plants)
|
| 95 |
plants = self._extract_features(plants)
|
| 96 |
self.output_manager.create_output_directories()
|
| 97 |
+
|
| 98 |
for key, pdata in plants.items():
|
| 99 |
self.output_manager.save_plant_results(key, pdata)
|
| 100 |
+
|
| 101 |
elapsed = time.perf_counter() - start
|
| 102 |
logger.info(f"Completed in {elapsed:.2f}s")
|
| 103 |
+
|
| 104 |
return {"plants": plants, "timing": elapsed}
|
| 105 |
|
| 106 |
def _segment(self, plants: Dict[str, Any]) -> Dict[str, Any]:
|
|
|
|
| 116 |
return plants
|
| 117 |
|
| 118 |
def _extract_features(self, plants: Dict[str, Any]) -> Dict[str, Any]:
|
| 119 |
+
"""Extract features: texture + vegetation indices."""
|
| 120 |
for key, pdata in plants.items():
|
| 121 |
composite = pdata['composite']
|
| 122 |
mask = pdata.get('mask')
|
| 123 |
|
| 124 |
+
# --- Texture: LBP on green band ---
|
| 125 |
pdata['texture_features'] = {}
|
|
|
|
| 126 |
spectral = pdata.get('spectral_stack', {})
|
| 127 |
if 'green' in spectral:
|
| 128 |
+
green_band = np.asarray(spectral['green'], dtype=np.float64)
|
| 129 |
+
if green_band.ndim == 3 and green_band.shape[-1] == 1:
|
| 130 |
+
green_band = green_band[..., 0]
|
| 131 |
+
|
| 132 |
if mask is not None:
|
| 133 |
valid = np.where(mask > 0, green_band, np.nan)
|
| 134 |
else:
|
| 135 |
valid = green_band
|
| 136 |
+
|
| 137 |
+
v = np.nan_to_num(valid, nan=np.nanmin(valid))
|
|
|
|
| 138 |
m, M = np.min(v), np.max(v)
|
| 139 |
denom = (M - m) if (M - m) > 1e-6 else 1.0
|
| 140 |
gray8 = ((v - m) / denom * 255.0).astype(np.uint8)
|
| 141 |
+
|
| 142 |
lbp_map = self.texture_extractor.extract_lbp(gray8)
|
| 143 |
pdata['texture_features'] = {'green': {'features': {'lbp': lbp_map}}}
|
| 144 |
|
| 145 |
+
# --- Vegetation indices ---
|
|
|
|
| 146 |
if spectral and mask is not None:
|
| 147 |
pdata['vegetation_indices'] = self._compute_vegetation(spectral, mask)
|
| 148 |
else:
|
| 149 |
pdata['vegetation_indices'] = {}
|
| 150 |
+
|
| 151 |
+
# --- Morphology (currently empty) ---
|
|
|
|
| 152 |
pdata['morphology_features'] = {}
|
| 153 |
|
| 154 |
return plants
|
| 155 |
|
| 156 |
def _compute_vegetation(self, spectral: Dict[str, np.ndarray], mask: np.ndarray) -> Dict[str, Any]:
|
| 157 |
+
"""Compute NDVI, GNDVI, SAVI."""
|
| 158 |
out = {}
|
| 159 |
for name in ("NDVI", "GNDVI", "SAVI"):
|
| 160 |
bands = self.vegetation_extractor.index_bands.get(name, [])
|
| 161 |
if not all(b in spectral for b in bands):
|
| 162 |
continue
|
| 163 |
+
|
| 164 |
+
arrays = []
|
| 165 |
+
for b in bands:
|
| 166 |
+
arr = np.asarray(spectral[b], dtype=np.float64)
|
| 167 |
+
if arr.ndim == 3 and arr.shape[-1] == 1:
|
| 168 |
+
arr = arr[..., 0]
|
| 169 |
+
arrays.append(arr)
|
| 170 |
+
|
| 171 |
values = self.vegetation_extractor.index_formulas[name](*arrays).astype(np.float64)
|
| 172 |
binary_mask = (mask > 0)
|
| 173 |
masked_values = np.where(binary_mask, values, np.nan)
|
| 174 |
valid = masked_values[~np.isnan(masked_values)]
|
| 175 |
+
|
| 176 |
stats = {
|
| 177 |
'mean': float(np.mean(valid)) if valid.size else 0.0,
|
| 178 |
'std': float(np.std(valid)) if valid.size else 0.0,
|
| 179 |
}
|
| 180 |
out[name] = {'values': masked_values, 'statistics': stats}
|
| 181 |
+
return out
|