Fahimeh Orvati Nia
commited on
Commit
·
91a7a12
1
Parent(s):
dd1d7f5
minimal pipeline
Browse files- requirements.txt +6 -42
- sorghum_pipeline/__init__.py +3 -23
- sorghum_pipeline/config.py +9 -43
- sorghum_pipeline/data/__init__.py +2 -11
- sorghum_pipeline/data/loader.py +13 -423
- sorghum_pipeline/data/mask_handler.py +4 -11
- sorghum_pipeline/data/preprocessor.py +12 -33
- sorghum_pipeline/features/__init__.py +2 -16
- sorghum_pipeline/output/__init__.py +2 -10
- sorghum_pipeline/pipeline.py +77 -192
- sorghum_pipeline/segmentation/__init__.py +2 -9
requirements.txt
CHANGED
|
@@ -1,48 +1,12 @@
|
|
| 1 |
-
# --- Core demo UI ---
|
| 2 |
gradio
|
| 3 |
pillow
|
| 4 |
-
|
| 5 |
-
# --- Scientific / image processing ---
|
| 6 |
numpy
|
| 7 |
-
|
| 8 |
-
matplotlib
|
| 9 |
-
scikit-image
|
| 10 |
-
opencv-python-headless
|
| 11 |
-
tifffile
|
| 12 |
-
|
| 13 |
-
# --- Machine learning / deep learning ---
|
| 14 |
torch
|
| 15 |
torchvision
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
ultralytics # YOLO models (if you extend later)
|
| 19 |
-
|
| 20 |
-
# --- Plant phenotyping ---
|
| 21 |
-
plantcv==4.6
|
| 22 |
-
|
| 23 |
-
# --- Data handling & utils ---
|
| 24 |
-
pandas
|
| 25 |
-
tqdm
|
| 26 |
-
pyyaml
|
| 27 |
-
joblib
|
| 28 |
-
|
| 29 |
-
# --- Geometry / remote sensing ---
|
| 30 |
-
shapely
|
| 31 |
-
rasterio
|
| 32 |
-
fiona
|
| 33 |
-
|
| 34 |
-
# --- For morphology / texture analysis ---
|
| 35 |
scikit-learn
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
# --- For model configs & logging ---
|
| 41 |
-
omegaconf
|
| 42 |
-
hydra-core
|
| 43 |
-
loguru
|
| 44 |
-
|
| 45 |
-
# --- Optional: segmentation research tools ---
|
| 46 |
-
# (comment these out if not needed to reduce build time)
|
| 47 |
-
segment-anything
|
| 48 |
-
git+https://github.com/facebookresearch/segment-anything-2.git@2b90b9f5ceec907a1c18123530e92e794ad901a4
|
|
|
|
|
|
|
| 1 |
gradio
|
| 2 |
pillow
|
|
|
|
|
|
|
| 3 |
numpy
|
| 4 |
+
opencv-python
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
torch
|
| 6 |
torchvision
|
| 7 |
+
transformers
|
| 8 |
+
scikit-image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
scikit-learn
|
| 10 |
+
scipy
|
| 11 |
+
matplotlib
|
| 12 |
+
plantcv
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sorghum_pipeline/__init__.py
CHANGED
|
@@ -1,31 +1,11 @@
|
|
| 1 |
"""
|
| 2 |
-
Sorghum Plant Phenotyping Pipeline
|
| 3 |
-
|
| 4 |
-
A comprehensive pipeline for analyzing sorghum plant images including:
|
| 5 |
-
- Data loading and preprocessing
|
| 6 |
-
- Image segmentation and masking
|
| 7 |
-
- Feature extraction (texture, morphology, vegetation indices)
|
| 8 |
-
- Results visualization and export
|
| 9 |
-
|
| 10 |
-
Author: Fahime Horvatinia
|
| 11 |
-
Version: 2.0.0
|
| 12 |
"""
|
| 13 |
|
| 14 |
__version__ = "2.0.0"
|
| 15 |
-
__author__ = "
|
| 16 |
|
| 17 |
from .pipeline import SorghumPipeline
|
| 18 |
from .config import Config
|
| 19 |
-
from .data import DataLoader
|
| 20 |
-
from .features import TextureExtractor, VegetationIndexExtractor, MorphologyExtractor
|
| 21 |
-
from .output import OutputManager
|
| 22 |
|
| 23 |
-
__all__ = [
|
| 24 |
-
"SorghumPipeline",
|
| 25 |
-
"Config",
|
| 26 |
-
"DataLoader",
|
| 27 |
-
"TextureExtractor",
|
| 28 |
-
"VegetationIndexExtractor",
|
| 29 |
-
"MorphologyExtractor",
|
| 30 |
-
"OutputManager"
|
| 31 |
-
]
|
|
|
|
| 1 |
"""
|
| 2 |
+
Minimal Sorghum Plant Phenotyping Pipeline for Hugging Face Demo.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
"""
|
| 4 |
|
| 5 |
__version__ = "2.0.0"
|
| 6 |
+
__author__ = "Fahimeh Orvati Nia"
|
| 7 |
|
| 8 |
from .pipeline import SorghumPipeline
|
| 9 |
from .config import Config
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
+
__all__ = ["SorghumPipeline", "Config"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sorghum_pipeline/config.py
CHANGED
|
@@ -1,76 +1,42 @@
|
|
| 1 |
-
"""
|
| 2 |
-
Minimal configuration for the Sorghum Pipeline.
|
| 3 |
-
"""
|
| 4 |
|
| 5 |
import os
|
| 6 |
-
from pathlib import Path
|
| 7 |
from dataclasses import dataclass
|
| 8 |
|
| 9 |
|
| 10 |
@dataclass
|
| 11 |
class Paths:
|
| 12 |
-
"""
|
| 13 |
input_folder: str
|
| 14 |
output_folder: str
|
| 15 |
boundingbox_dir: str = ""
|
| 16 |
|
| 17 |
def __post_init__(self):
|
| 18 |
-
"""Ensure paths are absolute."""
|
| 19 |
self.input_folder = os.path.abspath(self.input_folder)
|
| 20 |
self.output_folder = os.path.abspath(self.output_folder)
|
| 21 |
|
| 22 |
|
| 23 |
-
@dataclass
|
| 24 |
-
class ProcessingParams:
|
| 25 |
-
"""Minimal processing parameters."""
|
| 26 |
-
target_size: tuple = None
|
| 27 |
-
min_component_area: int = 1000
|
| 28 |
-
morphology_kernel_size: int = 7
|
| 29 |
-
segmentation_threshold: float = 0.5
|
| 30 |
-
|
| 31 |
-
|
| 32 |
@dataclass
|
| 33 |
class OutputSettings:
|
| 34 |
"""Output settings."""
|
| 35 |
save_images: bool = True
|
| 36 |
-
save_plots: bool = False
|
| 37 |
-
save_metadata: bool = False
|
| 38 |
plot_dpi: int = 100
|
| 39 |
-
segmentation_dir: str = "results"
|
| 40 |
-
texture_dir: str = "texture_output"
|
| 41 |
-
morphology_dir: str = "results"
|
| 42 |
-
vegetation_dir: str = "Vegetation_indices_images"
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
@dataclass
|
| 46 |
-
class ModelSettings:
|
| 47 |
-
"""Model settings."""
|
| 48 |
-
device: str = "auto"
|
| 49 |
-
model_name: str = "briaai/RMBG-2.0"
|
| 50 |
-
trust_remote_code: bool = True
|
| 51 |
-
cache_dir: str = ""
|
| 52 |
-
local_files_only: bool = False
|
| 53 |
|
| 54 |
|
| 55 |
class Config:
|
| 56 |
-
"""Minimal
|
| 57 |
|
| 58 |
def __init__(self):
|
| 59 |
-
""
|
| 60 |
-
self.paths = Paths(input_folder="", output_folder="", boundingbox_dir="")
|
| 61 |
-
self.processing = ProcessingParams()
|
| 62 |
self.output = OutputSettings()
|
| 63 |
-
self.model = ModelSettings()
|
| 64 |
|
| 65 |
def get_device(self) -> str:
|
| 66 |
-
"""Get
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
return "cuda" if torch.cuda.is_available() else "cpu"
|
| 70 |
-
return self.model.device
|
| 71 |
|
| 72 |
def validate(self) -> bool:
|
| 73 |
-
"""Validate
|
| 74 |
if self.paths.input_folder and not os.path.exists(self.paths.input_folder):
|
| 75 |
-
raise FileNotFoundError(f"Input folder
|
| 76 |
return True
|
|
|
|
| 1 |
+
"""Minimal configuration."""
|
|
|
|
|
|
|
| 2 |
|
| 3 |
import os
|
|
|
|
| 4 |
from dataclasses import dataclass
|
| 5 |
|
| 6 |
|
| 7 |
@dataclass
|
| 8 |
class Paths:
|
| 9 |
+
"""File paths."""
|
| 10 |
input_folder: str
|
| 11 |
output_folder: str
|
| 12 |
boundingbox_dir: str = ""
|
| 13 |
|
| 14 |
def __post_init__(self):
|
|
|
|
| 15 |
self.input_folder = os.path.abspath(self.input_folder)
|
| 16 |
self.output_folder = os.path.abspath(self.output_folder)
|
| 17 |
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
@dataclass
|
| 20 |
class OutputSettings:
|
| 21 |
"""Output settings."""
|
| 22 |
save_images: bool = True
|
|
|
|
|
|
|
| 23 |
plot_dpi: int = 100
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
|
| 26 |
class Config:
|
| 27 |
+
"""Minimal config."""
|
| 28 |
|
| 29 |
def __init__(self):
|
| 30 |
+
self.paths = Paths(input_folder="", output_folder="")
|
|
|
|
|
|
|
| 31 |
self.output = OutputSettings()
|
|
|
|
| 32 |
|
| 33 |
def get_device(self) -> str:
|
| 34 |
+
"""Get device."""
|
| 35 |
+
import torch
|
| 36 |
+
return "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
|
|
| 37 |
|
| 38 |
def validate(self) -> bool:
|
| 39 |
+
"""Validate."""
|
| 40 |
if self.paths.input_folder and not os.path.exists(self.paths.input_folder):
|
| 41 |
+
raise FileNotFoundError(f"Input folder not found: {self.paths.input_folder}")
|
| 42 |
return True
|
sorghum_pipeline/data/__init__.py
CHANGED
|
@@ -1,15 +1,6 @@
|
|
| 1 |
-
"""
|
| 2 |
-
Data loading and preprocessing modules.
|
| 3 |
|
| 4 |
-
This package contains all data-related functionality including:
|
| 5 |
-
- Raw image loading
|
| 6 |
-
- Data preprocessing
|
| 7 |
-
- Mask handling
|
| 8 |
-
- Data validation
|
| 9 |
-
"""
|
| 10 |
-
|
| 11 |
-
from .loader import DataLoader
|
| 12 |
from .preprocessor import ImagePreprocessor
|
| 13 |
from .mask_handler import MaskHandler
|
| 14 |
|
| 15 |
-
__all__ = ["
|
|
|
|
| 1 |
+
"""Data preprocessing modules."""
|
|
|
|
| 2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
from .preprocessor import ImagePreprocessor
|
| 4 |
from .mask_handler import MaskHandler
|
| 5 |
|
| 6 |
+
__all__ = ["ImagePreprocessor", "MaskHandler"]
|
sorghum_pipeline/data/loader.py
CHANGED
|
@@ -1,444 +1,34 @@
|
|
| 1 |
"""
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
This module handles loading raw images, managing plant data,
|
| 5 |
-
and organizing data according to the pipeline requirements.
|
| 6 |
"""
|
| 7 |
|
| 8 |
-
import os
|
| 9 |
-
import glob
|
| 10 |
-
import json
|
| 11 |
from pathlib import Path
|
| 12 |
-
from typing import Dict, List,
|
| 13 |
from PIL import Image
|
| 14 |
-
import numpy as np
|
| 15 |
import logging
|
| 16 |
|
| 17 |
logger = logging.getLogger(__name__)
|
| 18 |
|
| 19 |
|
| 20 |
class DataLoader:
|
| 21 |
-
"""
|
| 22 |
-
|
| 23 |
-
# Plants to ignore completely (empty by default)
|
| 24 |
-
IGNORE_PLANTS = set()
|
| 25 |
-
|
| 26 |
-
# Plants where you want exactly one frame from their own folder
|
| 27 |
-
EXACT_FRAME = {
|
| 28 |
-
4: 7, 5: 5, 7: 5, 12: 5, 13: 5, 18: 7, 19: 2, 20: 3,
|
| 29 |
-
24: 6, 25: 5, 26: 5, 30: 8, 37: 7
|
| 30 |
-
}
|
| 31 |
-
|
| 32 |
-
# Plants where you want to borrow a frame from a different plant folder
|
| 33 |
-
BORROW_FRAME = {
|
| 34 |
-
14: (13, 5), 15: (14, 5), 16: (15, 5), 33: (34, 7),
|
| 35 |
-
34: (35, 7), 35: (35, 8), 36: (36, 6)
|
| 36 |
-
}
|
| 37 |
-
|
| 38 |
-
# Overrides provided by user: preferred frame per target plant name
|
| 39 |
-
FRAME_OVERRIDE_BY_NAME = {
|
| 40 |
-
'plant1': 9, 'plant2': 10, 'plant3': 9, 'plant5': 7, 'plant6': 9, 'plant8': 5,
|
| 41 |
-
'plant7': 9, 'plant10': 9, 'plant11': 9, 'plant12': 9,
|
| 42 |
-
'plant13': 10, 'plant14': 8, 'plant15': 11, 'plant19': 4, 'plant20': 7,
|
| 43 |
-
'plant21': 9, 'plant22': 10, 'plant25': 4, 'plant26': 2, 'plant27': 10, 'plant28': 9, 'plant29': 2,
|
| 44 |
-
'plant30': 9, 'plant31': 10, 'plant32': 9, 'plant33': 8,
|
| 45 |
-
'plant35': 9, 'plant36': 4, 'plant38': 9, 'plant39': 9, 'plant41': 9,
|
| 46 |
-
'plant42': 6, 'plant43': 10, 'plant44': 9, 'plant45': 7,
|
| 47 |
-
'plant47': 10, 'plant48': 11,
|
| 48 |
-
}
|
| 49 |
-
|
| 50 |
-
# Substitutes provided by user: map target plant name -> source plant name
|
| 51 |
-
PLANT_SUBSTITUTES_BY_NAME = {
|
| 52 |
-
'plant16': 'plant15', 'plant15': 'plant14', 'plant14': 'plant13',
|
| 53 |
-
'plant13': 'plant12', 'plant33': 'plant34', 'plant34': 'plant35',
|
| 54 |
-
'plant24': 'plant25', 'plant25': 'plant25', 'plant35': 'plant36',
|
| 55 |
-
'plant36': 'plant37', 'plant37': 'plant37', 'plant44': 'plant43',
|
| 56 |
-
'plant45': 'plant44',
|
| 57 |
-
}
|
| 58 |
|
| 59 |
-
def __init__(self, input_folder: str, debug: bool = False,
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
Args:
|
| 64 |
-
input_folder: Path to the input dataset folder
|
| 65 |
-
debug: Enable debug logging
|
| 66 |
-
"""
|
| 67 |
self.input_folder = Path(input_folder)
|
| 68 |
self.debug = debug
|
| 69 |
-
self.include_ignored = include_ignored
|
| 70 |
-
self.strict_loader = strict_loader
|
| 71 |
|
| 72 |
if not self.input_folder.exists():
|
| 73 |
raise FileNotFoundError(f"Input folder does not exist: {input_folder}")
|
| 74 |
-
# Normalize excluded dates as a set of folder names (with dashes)
|
| 75 |
-
self.excluded_dates = set(excluded_dates or [])
|
| 76 |
|
| 77 |
def load_selected_frames(self) -> Dict[str, Dict[str, Any]]:
|
| 78 |
-
"""
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
Returns:
|
| 83 |
-
Dictionary with plant data organized by key format: "YYYY_MM_DD_plantX_frameY"
|
| 84 |
-
"""
|
| 85 |
-
logger.info("Loading selected frames from dataset...")
|
| 86 |
-
plants = {}
|
| 87 |
-
|
| 88 |
-
# Detect if input folder is a direct date folder (contains plant folders)
|
| 89 |
-
first_items = list(self.input_folder.iterdir())
|
| 90 |
-
has_plant_folders = any(item.is_dir() and item.name.startswith('plant') for item in first_items)
|
| 91 |
-
|
| 92 |
-
def choose_frame_and_source(pid: int) -> Tuple[int, str]:
|
| 93 |
-
if self.strict_loader:
|
| 94 |
-
# In strict mode, honor explicit frame overrides AND substitution of source plant
|
| 95 |
-
plant_name_local = f"plant{pid}"
|
| 96 |
-
frame_num = self.FRAME_OVERRIDE_BY_NAME.get(
|
| 97 |
-
plant_name_local,
|
| 98 |
-
self.EXACT_FRAME.get(pid, 8)
|
| 99 |
-
)
|
| 100 |
-
source_plant = self.PLANT_SUBSTITUTES_BY_NAME.get(plant_name_local, plant_name_local)
|
| 101 |
-
return frame_num, source_plant
|
| 102 |
-
# Original behavior
|
| 103 |
-
frame_num = self._get_frame_number(pid)
|
| 104 |
-
source_plant = self._get_source_plant(pid)
|
| 105 |
-
return frame_num, source_plant
|
| 106 |
-
|
| 107 |
-
if has_plant_folders:
|
| 108 |
-
# Direct date folder structure
|
| 109 |
-
date_name = self.input_folder.name
|
| 110 |
-
date_path = self.input_folder
|
| 111 |
-
for plant_name in sorted(os.listdir(date_path)):
|
| 112 |
-
plant_path = date_path / plant_name
|
| 113 |
-
if not plant_path.is_dir():
|
| 114 |
-
continue
|
| 115 |
-
try:
|
| 116 |
-
plant_id = int(plant_name.replace("plant", ""))
|
| 117 |
-
except ValueError:
|
| 118 |
-
continue
|
| 119 |
-
if (plant_id in self.IGNORE_PLANTS) and (not self.include_ignored):
|
| 120 |
-
if self.debug:
|
| 121 |
-
logger.debug(f"Ignoring plant {plant_id}")
|
| 122 |
-
continue
|
| 123 |
-
frame_num, source_plant = choose_frame_and_source(plant_id)
|
| 124 |
-
frame_data = self._load_single_frame(date_path, source_plant, frame_num, plant_name)
|
| 125 |
-
if frame_data:
|
| 126 |
-
key = f"{date_name.replace('-', '_')}_{plant_name}_frame{frame_num}"
|
| 127 |
-
plants[key] = frame_data
|
| 128 |
-
logger.debug(f"Loaded {key}")
|
| 129 |
-
else:
|
| 130 |
-
# Parent folder structure with date subfolders
|
| 131 |
-
for date_name in sorted(os.listdir(self.input_folder)):
|
| 132 |
-
date_path = self.input_folder / date_name
|
| 133 |
-
if not date_path.is_dir():
|
| 134 |
-
continue
|
| 135 |
-
if date_name in self.excluded_dates:
|
| 136 |
-
logger.info(f"Skipping excluded date: {date_name}")
|
| 137 |
-
continue
|
| 138 |
-
for plant_name in sorted(os.listdir(date_path)):
|
| 139 |
-
plant_path = date_path / plant_name
|
| 140 |
-
if not plant_path.is_dir():
|
| 141 |
-
continue
|
| 142 |
-
try:
|
| 143 |
-
plant_id = int(plant_name.replace("plant", ""))
|
| 144 |
-
except ValueError:
|
| 145 |
-
continue
|
| 146 |
-
if (plant_id in self.IGNORE_PLANTS) and (not self.include_ignored):
|
| 147 |
-
if self.debug:
|
| 148 |
-
logger.debug(f"Ignoring plant {plant_id}")
|
| 149 |
-
continue
|
| 150 |
-
frame_num, source_plant = choose_frame_and_source(plant_id)
|
| 151 |
-
frame_data = self._load_single_frame(date_path, source_plant, frame_num, plant_name)
|
| 152 |
-
if frame_data:
|
| 153 |
-
key = f"{date_name.replace('-', '_')}_{plant_name}_frame{frame_num}"
|
| 154 |
-
plants[key] = frame_data
|
| 155 |
-
logger.debug(f"Loaded {key}")
|
| 156 |
-
|
| 157 |
-
logger.info(f"Successfully loaded {len(plants)} plant frames")
|
| 158 |
-
return plants
|
| 159 |
|
| 160 |
def load_all_frames(self) -> Dict[str, Dict[str, Any]]:
|
| 161 |
-
"""
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
Returns:
|
| 165 |
-
Dictionary with all plant frames
|
| 166 |
-
"""
|
| 167 |
-
logger.info("Loading all frames from dataset...")
|
| 168 |
-
plants = {}
|
| 169 |
-
|
| 170 |
-
# Check if we're directly in a date folder (contains plant folders)
|
| 171 |
-
# or in a parent folder (contains date folders)
|
| 172 |
-
first_items = list(self.input_folder.iterdir())
|
| 173 |
-
has_plant_folders = any(item.is_dir() and item.name.startswith('plant') for item in first_items)
|
| 174 |
-
|
| 175 |
-
if has_plant_folders:
|
| 176 |
-
# We're directly in a date folder
|
| 177 |
-
logger.info("Detected direct date folder structure")
|
| 178 |
-
date_name = self.input_folder.name
|
| 179 |
-
self._load_plants_from_date_folder(self.input_folder, date_name, plants)
|
| 180 |
-
else:
|
| 181 |
-
# We're in a parent folder with date subfolders
|
| 182 |
-
logger.info("Detected parent folder structure")
|
| 183 |
-
for date_name in sorted(os.listdir(self.input_folder)):
|
| 184 |
-
date_path = self.input_folder / date_name
|
| 185 |
-
if not date_path.is_dir():
|
| 186 |
-
continue
|
| 187 |
-
if date_name in self.excluded_dates:
|
| 188 |
-
logger.info(f"Skipping excluded date: {date_name}")
|
| 189 |
-
continue
|
| 190 |
-
|
| 191 |
-
logger.info(f"Processing date: {date_name}")
|
| 192 |
-
self._load_plants_from_date_folder(date_path, date_name, plants)
|
| 193 |
-
|
| 194 |
-
logger.info(f"Successfully loaded {len(plants)} plant frames")
|
| 195 |
-
return plants
|
| 196 |
-
|
| 197 |
-
def _load_plants_from_date_folder(self, date_path: Path, date_name: str, plants: Dict[str, Dict[str, Any]]) -> None:
|
| 198 |
-
"""Load plants from a date folder."""
|
| 199 |
-
for plant_name in sorted(os.listdir(date_path)):
|
| 200 |
-
plant_path = date_path / plant_name
|
| 201 |
-
if not plant_path.is_dir():
|
| 202 |
-
continue
|
| 203 |
-
|
| 204 |
-
# Extract plant ID
|
| 205 |
-
try:
|
| 206 |
-
plant_id = int(plant_name.replace("plant", ""))
|
| 207 |
-
except ValueError:
|
| 208 |
-
logger.warning(f"Could not extract plant ID from {plant_name}")
|
| 209 |
-
continue
|
| 210 |
-
|
| 211 |
-
# Skip ignored plants
|
| 212 |
-
if (plant_id in self.IGNORE_PLANTS) and (not self.include_ignored):
|
| 213 |
-
logger.info(f"Skipping ignored plant {plant_id}")
|
| 214 |
-
continue
|
| 215 |
-
|
| 216 |
-
logger.info(f"Processing plant {plant_id}")
|
| 217 |
-
|
| 218 |
-
# Load all frames for this plant
|
| 219 |
-
pattern = str(plant_path / f"{plant_name}_frame*.tif")
|
| 220 |
-
frame_files = sorted(glob.glob(pattern))
|
| 221 |
-
logger.info(f"Found {len(frame_files)} frame files for {plant_name}")
|
| 222 |
-
|
| 223 |
-
for frame_path in frame_files:
|
| 224 |
-
frame_data = self._load_frame_from_path(frame_path, plant_name)
|
| 225 |
-
if frame_data:
|
| 226 |
-
frame_id = Path(frame_path).stem.split("_frame")[-1]
|
| 227 |
-
key = f"{date_name.replace('-', '_')}_{plant_name}_frame{frame_id}"
|
| 228 |
-
plants[key] = frame_data
|
| 229 |
-
logger.debug(f"Loaded frame: {key}")
|
| 230 |
-
else:
|
| 231 |
-
logger.warning(f"Failed to load frame: {frame_path}")
|
| 232 |
-
|
| 233 |
-
def load_single_plant(self, date: str, plant: str, frame: int) -> Optional[Dict[str, Any]]:
|
| 234 |
-
"""
|
| 235 |
-
Load a specific plant frame.
|
| 236 |
-
|
| 237 |
-
Args:
|
| 238 |
-
date: Date string (e.g., "2025-02-05")
|
| 239 |
-
plant: Plant name (e.g., "plant1")
|
| 240 |
-
frame: Frame number
|
| 241 |
-
|
| 242 |
-
Returns:
|
| 243 |
-
Plant data dictionary or None if not found
|
| 244 |
-
"""
|
| 245 |
-
date_path = self.input_folder / date
|
| 246 |
-
if not date_path.exists():
|
| 247 |
-
logger.error(f"Date folder not found: {date}")
|
| 248 |
-
return None
|
| 249 |
-
|
| 250 |
-
plant_path = date_path / plant
|
| 251 |
-
if not plant_path.exists():
|
| 252 |
-
logger.error(f"Plant folder not found: {plant}")
|
| 253 |
-
return None
|
| 254 |
-
|
| 255 |
-
filename = f"{plant}_frame{frame}.tif"
|
| 256 |
-
frame_path = plant_path / filename
|
| 257 |
-
|
| 258 |
-
return self._load_frame_from_path(str(frame_path), plant)
|
| 259 |
-
|
| 260 |
-
def _get_frame_number(self, plant_id: int) -> int:
|
| 261 |
-
"""Get the frame number for a plant ID."""
|
| 262 |
-
plant_name = f"plant{plant_id}"
|
| 263 |
-
# Highest priority: explicit overrides by plant name
|
| 264 |
-
if plant_name in self.FRAME_OVERRIDE_BY_NAME:
|
| 265 |
-
return int(self.FRAME_OVERRIDE_BY_NAME[plant_name])
|
| 266 |
-
# Next: original exact/borrrow rules
|
| 267 |
-
if plant_id in self.EXACT_FRAME:
|
| 268 |
-
return self.EXACT_FRAME[plant_id]
|
| 269 |
-
elif plant_id in self.BORROW_FRAME:
|
| 270 |
-
return self.BORROW_FRAME[plant_id][1]
|
| 271 |
-
else:
|
| 272 |
-
return 8 # Default frame
|
| 273 |
-
|
| 274 |
-
def _get_source_plant(self, plant_id: int) -> str:
|
| 275 |
-
"""Get the source plant name for a plant ID."""
|
| 276 |
-
plant_name = f"plant{plant_id}"
|
| 277 |
-
# Highest priority: explicit substitutes by plant name
|
| 278 |
-
if plant_name in self.PLANT_SUBSTITUTES_BY_NAME:
|
| 279 |
-
return self.PLANT_SUBSTITUTES_BY_NAME[plant_name]
|
| 280 |
-
# Next: original borrow rules
|
| 281 |
-
if plant_id in self.BORROW_FRAME:
|
| 282 |
-
source_id = self.BORROW_FRAME[plant_id][0]
|
| 283 |
-
return f"plant{source_id}"
|
| 284 |
-
else:
|
| 285 |
-
return f"plant{plant_id}"
|
| 286 |
-
|
| 287 |
-
def _load_single_frame(self, date_path: Path, source_plant: str,
|
| 288 |
-
frame_num: int, target_plant: str) -> Optional[Dict[str, Any]]:
|
| 289 |
-
"""Load a single frame from the specified path."""
|
| 290 |
-
filename = f"{source_plant}_frame{frame_num}.tif"
|
| 291 |
-
frame_path = date_path / source_plant / filename
|
| 292 |
-
|
| 293 |
-
if not frame_path.exists():
|
| 294 |
-
if self.debug:
|
| 295 |
-
logger.warning(f"Frame not found: {frame_path}")
|
| 296 |
-
return None
|
| 297 |
-
|
| 298 |
-
return self._load_frame_from_path(str(frame_path), target_plant)
|
| 299 |
-
|
| 300 |
-
def _load_frame_from_path(self, frame_path: str, plant_name: str) -> Optional[Dict[str, Any]]:
|
| 301 |
-
"""Load frame data from a file path."""
|
| 302 |
-
try:
|
| 303 |
-
logger.debug(f"Attempting to load: {frame_path}")
|
| 304 |
-
image = Image.open(frame_path)
|
| 305 |
-
filename = Path(frame_path).name
|
| 306 |
-
logger.debug(f"Successfully loaded image: {filename}, size: {image.size}")
|
| 307 |
-
|
| 308 |
-
return {
|
| 309 |
-
"raw_image": (image, filename),
|
| 310 |
-
"plant_name": plant_name,
|
| 311 |
-
"file_path": frame_path
|
| 312 |
-
}
|
| 313 |
-
except Exception as e:
|
| 314 |
-
logger.error(f"Failed to load {frame_path}: {e}")
|
| 315 |
-
return None
|
| 316 |
-
|
| 317 |
-
def load_bounding_boxes(self, bbox_dir: str) -> Dict[str, Tuple[int, int, int, int]]:
|
| 318 |
-
"""
|
| 319 |
-
Load bounding box data from JSON files.
|
| 320 |
-
|
| 321 |
-
Args:
|
| 322 |
-
bbox_dir: Directory containing bounding box JSON files
|
| 323 |
-
|
| 324 |
-
Returns:
|
| 325 |
-
Dictionary mapping plant names to bounding box coordinates
|
| 326 |
-
"""
|
| 327 |
-
bbox_path = Path(bbox_dir)
|
| 328 |
-
if not bbox_path.exists():
|
| 329 |
-
raise FileNotFoundError(f"Bounding box directory not found: {bbox_dir}")
|
| 330 |
-
|
| 331 |
-
bbox_lookup = {}
|
| 332 |
-
|
| 333 |
-
for json_file in bbox_path.glob("*.json"):
|
| 334 |
-
stem = json_file.stem
|
| 335 |
-
# Normalize stems like plant_33_new -> plant33
|
| 336 |
-
if stem.startswith('plant_'):
|
| 337 |
-
parts = stem.split('_')
|
| 338 |
-
try:
|
| 339 |
-
idx = next(i for i,p in enumerate(parts) if p.isdigit())
|
| 340 |
-
plant_id = f"plant{parts[idx]}"
|
| 341 |
-
except Exception:
|
| 342 |
-
plant_id = stem.replace('_', '')
|
| 343 |
-
else:
|
| 344 |
-
plant_id = stem
|
| 345 |
-
try:
|
| 346 |
-
with open(json_file, 'r') as f:
|
| 347 |
-
data = json.load(f)
|
| 348 |
-
|
| 349 |
-
shapes = data.get('shapes', [])
|
| 350 |
-
# Prefer rectangle labeled 'sorghum' (case-insensitive), else first rectangle
|
| 351 |
-
def _is_sorghum_label(s: dict) -> bool:
|
| 352 |
-
for key in ('label', 'name', 'text'):
|
| 353 |
-
val = s.get(key)
|
| 354 |
-
if isinstance(val, str) and val.lower() == 'sorghum':
|
| 355 |
-
return True
|
| 356 |
-
return False
|
| 357 |
-
rect = next((s for s in shapes if s.get('shape_type') == 'rectangle' and _is_sorghum_label(s)), None)
|
| 358 |
-
if rect is None:
|
| 359 |
-
rect = next((s for s in shapes if s.get('shape_type') == 'rectangle'), None)
|
| 360 |
-
|
| 361 |
-
if rect:
|
| 362 |
-
(x1, y1), (x2, y2) = rect['points']
|
| 363 |
-
bbox_lookup[plant_id] = (
|
| 364 |
-
int(max(0, x1)),
|
| 365 |
-
int(max(0, y1)),
|
| 366 |
-
int(min(1e9, x2)),
|
| 367 |
-
int(min(1e9, y2))
|
| 368 |
-
)
|
| 369 |
-
else:
|
| 370 |
-
bbox_lookup[plant_id] = None
|
| 371 |
-
|
| 372 |
-
except Exception as e:
|
| 373 |
-
logger.error(f"Failed to load bounding box {json_file}: {e}")
|
| 374 |
-
|
| 375 |
-
logger.info(f"Loaded {len(bbox_lookup)} bounding boxes")
|
| 376 |
-
return bbox_lookup
|
| 377 |
-
|
| 378 |
-
def load_hand_labels(self, labels_dir: str) -> Dict[str, np.ndarray]:
|
| 379 |
-
"""
|
| 380 |
-
Load hand-labeled masks from JSON files.
|
| 381 |
-
|
| 382 |
-
Args:
|
| 383 |
-
labels_dir: Directory containing label JSON files
|
| 384 |
-
|
| 385 |
-
Returns:
|
| 386 |
-
Dictionary mapping plant names to mask arrays
|
| 387 |
-
"""
|
| 388 |
-
labels_path = Path(labels_dir)
|
| 389 |
-
if not labels_path.exists():
|
| 390 |
-
logger.warning(f"Labels directory not found: {labels_dir}")
|
| 391 |
-
return {}
|
| 392 |
-
|
| 393 |
-
masks = {}
|
| 394 |
-
|
| 395 |
-
for json_file in labels_path.glob("*.json"):
|
| 396 |
-
plant_id = json_file.stem
|
| 397 |
-
try:
|
| 398 |
-
with open(json_file, 'r') as f:
|
| 399 |
-
data = json.load(f)
|
| 400 |
-
|
| 401 |
-
# Create mask from shapes (assuming we have image dimensions)
|
| 402 |
-
# This would need to be adapted based on your label format
|
| 403 |
-
mask = self._create_mask_from_shapes(data)
|
| 404 |
-
if mask is not None:
|
| 405 |
-
masks[plant_id] = mask
|
| 406 |
-
|
| 407 |
-
except Exception as e:
|
| 408 |
-
logger.error(f"Failed to load label {json_file}: {e}")
|
| 409 |
-
|
| 410 |
-
logger.info(f"Loaded {len(masks)} hand labels")
|
| 411 |
-
return masks
|
| 412 |
-
|
| 413 |
-
def _create_mask_from_shapes(self, data: Dict) -> Optional[np.ndarray]:
|
| 414 |
-
"""Create a mask array from shape data."""
|
| 415 |
-
# This is a placeholder - implement based on your label format
|
| 416 |
-
# For now, return None
|
| 417 |
-
return None
|
| 418 |
-
|
| 419 |
-
def validate_data(self, plants: Dict[str, Dict[str, Any]]) -> bool:
|
| 420 |
-
"""
|
| 421 |
-
Validate loaded plant data.
|
| 422 |
-
|
| 423 |
-
Args:
|
| 424 |
-
plants: Dictionary of plant data
|
| 425 |
-
|
| 426 |
-
Returns:
|
| 427 |
-
True if data is valid, False otherwise
|
| 428 |
-
"""
|
| 429 |
-
if not plants:
|
| 430 |
-
logger.error("No plant data loaded")
|
| 431 |
-
return False
|
| 432 |
-
|
| 433 |
-
for key, data in plants.items():
|
| 434 |
-
if "raw_image" not in data:
|
| 435 |
-
logger.error(f"Missing raw_image in {key}")
|
| 436 |
-
return False
|
| 437 |
-
|
| 438 |
-
image, filename = data["raw_image"]
|
| 439 |
-
if not isinstance(image, Image.Image):
|
| 440 |
-
logger.error(f"Invalid image type in {key}")
|
| 441 |
-
return False
|
| 442 |
-
|
| 443 |
-
logger.info("Data validation passed")
|
| 444 |
-
return True
|
|
|
|
| 1 |
"""
|
| 2 |
+
Minimal data loading (not used in single-image demo mode).
|
|
|
|
|
|
|
|
|
|
| 3 |
"""
|
| 4 |
|
|
|
|
|
|
|
|
|
|
| 5 |
from pathlib import Path
|
| 6 |
+
from typing import Dict, List, Optional, Any
|
| 7 |
from PIL import Image
|
|
|
|
| 8 |
import logging
|
| 9 |
|
| 10 |
logger = logging.getLogger(__name__)
|
| 11 |
|
| 12 |
|
| 13 |
class DataLoader:
|
| 14 |
+
"""Minimal data loader (placeholder - not used in demo)."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
+
def __init__(self, input_folder: str, debug: bool = False,
|
| 17 |
+
include_ignored: bool = False, strict_loader: bool = False,
|
| 18 |
+
excluded_dates: Optional[List[str]] = None):
|
| 19 |
+
"""Initialize data loader."""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
self.input_folder = Path(input_folder)
|
| 21 |
self.debug = debug
|
|
|
|
|
|
|
| 22 |
|
| 23 |
if not self.input_folder.exists():
|
| 24 |
raise FileNotFoundError(f"Input folder does not exist: {input_folder}")
|
|
|
|
|
|
|
| 25 |
|
| 26 |
def load_selected_frames(self) -> Dict[str, Dict[str, Any]]:
|
| 27 |
+
"""Load selected frames (not used in minimal demo)."""
|
| 28 |
+
logger.warning("DataLoader not used in minimal demo mode")
|
| 29 |
+
return {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
def load_all_frames(self) -> Dict[str, Dict[str, Any]]:
|
| 32 |
+
"""Load all frames (not used in minimal demo)."""
|
| 33 |
+
logger.warning("DataLoader not used in minimal demo mode")
|
| 34 |
+
return {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sorghum_pipeline/data/mask_handler.py
CHANGED
|
@@ -1,19 +1,13 @@
|
|
| 1 |
-
"""
|
| 2 |
-
Minimal mask handling for the Sorghum Pipeline.
|
| 3 |
-
"""
|
| 4 |
|
| 5 |
import numpy as np
|
| 6 |
import cv2
|
| 7 |
-
import logging
|
| 8 |
-
|
| 9 |
-
logger = logging.getLogger(__name__)
|
| 10 |
|
| 11 |
|
| 12 |
class MaskHandler:
|
| 13 |
-
"""Minimal mask
|
| 14 |
|
| 15 |
def __init__(self, min_area: int = 1000, kernel_size: int = 7):
|
| 16 |
-
"""Initialize mask handler."""
|
| 17 |
self.min_area = min_area
|
| 18 |
self.kernel_size = kernel_size
|
| 19 |
|
|
@@ -22,7 +16,6 @@ class MaskHandler:
|
|
| 22 |
if mask is None:
|
| 23 |
return image
|
| 24 |
if mask.shape[:2] != image.shape[:2]:
|
| 25 |
-
mask = cv2.resize(mask
|
| 26 |
-
|
| 27 |
-
binary = (mask.astype(np.int32) > 0).astype(np.uint8) * 255
|
| 28 |
return cv2.bitwise_and(image, image, mask=binary)
|
|
|
|
| 1 |
+
"""Minimal mask handling."""
|
|
|
|
|
|
|
| 2 |
|
| 3 |
import numpy as np
|
| 4 |
import cv2
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
|
| 7 |
class MaskHandler:
|
| 8 |
+
"""Minimal mask operations."""
|
| 9 |
|
| 10 |
def __init__(self, min_area: int = 1000, kernel_size: int = 7):
|
|
|
|
| 11 |
self.min_area = min_area
|
| 12 |
self.kernel_size = kernel_size
|
| 13 |
|
|
|
|
| 16 |
if mask is None:
|
| 17 |
return image
|
| 18 |
if mask.shape[:2] != image.shape[:2]:
|
| 19 |
+
mask = cv2.resize(mask, (image.shape[1], image.shape[0]), interpolation=cv2.INTER_NEAREST)
|
| 20 |
+
binary = (mask > 0).astype(np.uint8) * 255
|
|
|
|
| 21 |
return cv2.bitwise_and(image, image, mask=binary)
|
sorghum_pipeline/data/preprocessor.py
CHANGED
|
@@ -1,26 +1,19 @@
|
|
| 1 |
-
"""
|
| 2 |
-
Minimal image preprocessing for the Sorghum Pipeline.
|
| 3 |
-
"""
|
| 4 |
|
| 5 |
import numpy as np
|
| 6 |
-
import cv2
|
| 7 |
from PIL import Image
|
| 8 |
from typing import Dict, Tuple, Any
|
| 9 |
from itertools import product
|
| 10 |
-
import logging
|
| 11 |
-
|
| 12 |
-
logger = logging.getLogger(__name__)
|
| 13 |
|
| 14 |
|
| 15 |
class ImagePreprocessor:
|
| 16 |
-
"""Minimal
|
| 17 |
|
| 18 |
def __init__(self, target_size=None):
|
| 19 |
-
"""Initialize preprocessor."""
|
| 20 |
self.target_size = target_size
|
| 21 |
|
| 22 |
def convert_to_uint8(self, arr: np.ndarray) -> np.ndarray:
|
| 23 |
-
"""Convert
|
| 24 |
arr = np.nan_to_num(arr, nan=0.0, posinf=0.0, neginf=0.0)
|
| 25 |
if arr.ptp() > 0:
|
| 26 |
normalized = (arr - arr.min()) / (arr.ptp() + 1e-6) * 255
|
|
@@ -29,38 +22,24 @@ class ImagePreprocessor:
|
|
| 29 |
return np.clip(normalized, 0, 255).astype(np.uint8)
|
| 30 |
|
| 31 |
def process_raw_image(self, pil_img: Image.Image) -> Tuple[np.ndarray, Dict[str, np.ndarray]]:
|
| 32 |
-
"""Process 4-band
|
| 33 |
d = pil_img.size[0] // 2
|
| 34 |
-
boxes = [
|
| 35 |
-
(j, i, j + d, i + d)
|
| 36 |
-
for i, j in product(range(0, pil_img.height, d), range(0, pil_img.width, d))
|
| 37 |
-
]
|
| 38 |
-
|
| 39 |
stack = np.stack([np.array(pil_img.crop(box), dtype=float) for box in boxes], axis=-1)
|
| 40 |
green, red, red_edge, nir = np.split(stack, 4, axis=-1)
|
| 41 |
|
| 42 |
-
# Pseudo-RGB composite: (green, red_edge, red)
|
| 43 |
composite = np.concatenate([green, red_edge, red], axis=-1)
|
| 44 |
composite_uint8 = self.convert_to_uint8(composite)
|
| 45 |
|
| 46 |
-
spectral_bands = {
|
| 47 |
-
"green": green,
|
| 48 |
-
"red": red,
|
| 49 |
-
"red_edge": red_edge,
|
| 50 |
-
"nir": nir
|
| 51 |
-
}
|
| 52 |
-
|
| 53 |
return composite_uint8, spectral_bands
|
| 54 |
|
| 55 |
def create_composites(self, plants: Dict[str, Dict[str, Any]]) -> Dict[str, Dict[str, Any]]:
|
| 56 |
-
"""Create composites
|
| 57 |
for key, pdata in plants.items():
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
pdata["spectral_stack"] = spectral_stack
|
| 64 |
-
except Exception as e:
|
| 65 |
-
logger.error(f"Failed to create composite for {key}: {e}")
|
| 66 |
return plants
|
|
|
|
| 1 |
+
"""Minimal image preprocessing."""
|
|
|
|
|
|
|
| 2 |
|
| 3 |
import numpy as np
|
|
|
|
| 4 |
from PIL import Image
|
| 5 |
from typing import Dict, Tuple, Any
|
| 6 |
from itertools import product
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
|
| 9 |
class ImagePreprocessor:
|
| 10 |
+
"""Minimal preprocessor."""
|
| 11 |
|
| 12 |
def __init__(self, target_size=None):
|
|
|
|
| 13 |
self.target_size = target_size
|
| 14 |
|
| 15 |
def convert_to_uint8(self, arr: np.ndarray) -> np.ndarray:
|
| 16 |
+
"""Convert to uint8."""
|
| 17 |
arr = np.nan_to_num(arr, nan=0.0, posinf=0.0, neginf=0.0)
|
| 18 |
if arr.ptp() > 0:
|
| 19 |
normalized = (arr - arr.min()) / (arr.ptp() + 1e-6) * 255
|
|
|
|
| 22 |
return np.clip(normalized, 0, 255).astype(np.uint8)
|
| 23 |
|
| 24 |
def process_raw_image(self, pil_img: Image.Image) -> Tuple[np.ndarray, Dict[str, np.ndarray]]:
|
| 25 |
+
"""Process 4-band to composite + spectral."""
|
| 26 |
d = pil_img.size[0] // 2
|
| 27 |
+
boxes = [(j, i, j + d, i + d) for i, j in product(range(0, pil_img.height, d), range(0, pil_img.width, d))]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
stack = np.stack([np.array(pil_img.crop(box), dtype=float) for box in boxes], axis=-1)
|
| 29 |
green, red, red_edge, nir = np.split(stack, 4, axis=-1)
|
| 30 |
|
|
|
|
| 31 |
composite = np.concatenate([green, red_edge, red], axis=-1)
|
| 32 |
composite_uint8 = self.convert_to_uint8(composite)
|
| 33 |
|
| 34 |
+
spectral_bands = {"green": green, "red": red, "red_edge": red_edge, "nir": nir}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
return composite_uint8, spectral_bands
|
| 36 |
|
| 37 |
def create_composites(self, plants: Dict[str, Dict[str, Any]]) -> Dict[str, Dict[str, Any]]:
|
| 38 |
+
"""Create composites."""
|
| 39 |
for key, pdata in plants.items():
|
| 40 |
+
if "raw_image" in pdata:
|
| 41 |
+
image, _ = pdata["raw_image"]
|
| 42 |
+
composite, spectral_stack = self.process_raw_image(image)
|
| 43 |
+
pdata["composite"] = composite
|
| 44 |
+
pdata["spectral_stack"] = spectral_stack
|
|
|
|
|
|
|
|
|
|
| 45 |
return plants
|
sorghum_pipeline/features/__init__.py
CHANGED
|
@@ -1,21 +1,7 @@
|
|
| 1 |
-
"""
|
| 2 |
-
Feature extraction modules for the Sorghum Pipeline.
|
| 3 |
-
|
| 4 |
-
This package contains all feature extraction functionality including:
|
| 5 |
-
- Texture features (LBP, HOG, Lacunarity, EHD)
|
| 6 |
-
- Vegetation indices
|
| 7 |
-
- Morphological features
|
| 8 |
-
- Spectral features
|
| 9 |
-
"""
|
| 10 |
|
| 11 |
from .texture import TextureExtractor
|
| 12 |
from .vegetation import VegetationIndexExtractor
|
| 13 |
from .morphology import MorphologyExtractor
|
| 14 |
-
from .spectral import SpectralExtractor
|
| 15 |
|
| 16 |
-
__all__ = [
|
| 17 |
-
"TextureExtractor",
|
| 18 |
-
"VegetationIndexExtractor",
|
| 19 |
-
"MorphologyExtractor",
|
| 20 |
-
"SpectralExtractor"
|
| 21 |
-
]
|
|
|
|
| 1 |
+
"""Feature extraction modules."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
from .texture import TextureExtractor
|
| 4 |
from .vegetation import VegetationIndexExtractor
|
| 5 |
from .morphology import MorphologyExtractor
|
|
|
|
| 6 |
|
| 7 |
+
__all__ = ["TextureExtractor", "VegetationIndexExtractor", "MorphologyExtractor"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sorghum_pipeline/output/__init__.py
CHANGED
|
@@ -1,13 +1,5 @@
|
|
| 1 |
-
"""
|
| 2 |
-
Output management modules for the Sorghum Pipeline.
|
| 3 |
-
|
| 4 |
-
This package contains output functionality including:
|
| 5 |
-
- Result saving
|
| 6 |
-
- Visualization generation
|
| 7 |
-
- Report creation
|
| 8 |
-
- Data export
|
| 9 |
-
"""
|
| 10 |
|
| 11 |
from .manager import OutputManager
|
| 12 |
|
| 13 |
-
__all__ = ["OutputManager"]
|
|
|
|
| 1 |
+
"""Output management modules."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
from .manager import OutputManager
|
| 4 |
|
| 5 |
+
__all__ = ["OutputManager"]
|
sorghum_pipeline/pipeline.py
CHANGED
|
@@ -1,16 +1,12 @@
|
|
| 1 |
"""
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
Minimal single-image version for Hugging Face demo.
|
| 5 |
"""
|
| 6 |
|
| 7 |
-
import os
|
| 8 |
import logging
|
| 9 |
from pathlib import Path
|
| 10 |
-
from typing import Dict, Any
|
| 11 |
import numpy as np
|
| 12 |
import cv2
|
| 13 |
-
from sklearn.decomposition import PCA
|
| 14 |
|
| 15 |
from .config import Config
|
| 16 |
from .data import ImagePreprocessor, MaskHandler
|
|
@@ -22,223 +18,112 @@ logger = logging.getLogger(__name__)
|
|
| 22 |
|
| 23 |
|
| 24 |
class SorghumPipeline:
|
| 25 |
-
"""Minimal pipeline for single-image
|
| 26 |
|
| 27 |
def __init__(self, config: Config):
|
| 28 |
-
"""Initialize
|
| 29 |
-
|
| 30 |
self.config = config
|
| 31 |
self.config.validate()
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
"""Setup logging configuration."""
|
| 37 |
-
logging.basicConfig(
|
| 38 |
-
level=logging.INFO,
|
| 39 |
-
format='%(asctime)s - %(levelname)s - %(message)s',
|
| 40 |
-
handlers=[logging.StreamHandler()]
|
| 41 |
-
)
|
| 42 |
-
|
| 43 |
-
def _initialize_components(self):
|
| 44 |
-
"""Initialize pipeline components."""
|
| 45 |
-
self.preprocessor = ImagePreprocessor(target_size=None)
|
| 46 |
-
self.mask_handler = MaskHandler(min_area=1000, kernel_size=7)
|
| 47 |
self.texture_extractor = TextureExtractor()
|
| 48 |
self.vegetation_extractor = VegetationIndexExtractor()
|
| 49 |
self.morphology_extractor = MorphologyExtractor()
|
| 50 |
self.segmentation_manager = SegmentationManager(
|
| 51 |
-
model_name="briaai/RMBG-2.0",
|
| 52 |
device=self.config.get_device(),
|
| 53 |
-
threshold=0.5,
|
| 54 |
trust_remote_code=True
|
| 55 |
)
|
| 56 |
self.output_manager = OutputManager(
|
| 57 |
output_folder=self.config.paths.output_folder,
|
| 58 |
settings=self.config.output
|
| 59 |
)
|
|
|
|
| 60 |
|
| 61 |
def run(self, single_image_path: str) -> Dict[str, Any]:
|
| 62 |
-
"""
|
| 63 |
-
|
| 64 |
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
Returns:
|
| 69 |
-
Dictionary containing results
|
| 70 |
-
"""
|
| 71 |
-
logger.info("Starting minimal single-image pipeline...")
|
| 72 |
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
_img = _Image.open(str(_p))
|
| 82 |
-
plants = {
|
| 83 |
-
"demo_demo_frame1": {
|
| 84 |
-
"raw_image": (_img, _p.name),
|
| 85 |
-
"plant_name": "demo",
|
| 86 |
-
"file_path": str(_p)
|
| 87 |
-
}
|
| 88 |
-
}
|
| 89 |
-
|
| 90 |
-
# Create composite
|
| 91 |
-
plants = self.preprocessor.create_composites(plants)
|
| 92 |
-
|
| 93 |
-
# Segment
|
| 94 |
-
plants = self._segment_plants(plants)
|
| 95 |
-
|
| 96 |
-
# Extract features
|
| 97 |
-
plants = self._extract_features(plants)
|
| 98 |
-
|
| 99 |
-
# Generate outputs
|
| 100 |
-
self._generate_outputs(plants)
|
| 101 |
-
|
| 102 |
-
# Summary
|
| 103 |
-
summary = self._create_summary(plants)
|
| 104 |
-
|
| 105 |
-
total_time = time.perf_counter() - total_start
|
| 106 |
-
logger.info(f"Pipeline completed in {total_time:.2f}s")
|
| 107 |
-
|
| 108 |
-
return {
|
| 109 |
-
"plants": plants,
|
| 110 |
-
"summary": summary,
|
| 111 |
-
"config": self.config,
|
| 112 |
-
"timing_seconds": total_time
|
| 113 |
}
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
|
| 119 |
-
def
|
| 120 |
-
"""Segment
|
| 121 |
for key, pdata in plants.items():
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
pdata['soft_mask'] = soft_mask
|
| 126 |
-
pdata['mask'] = (soft_mask * 255.0).astype(np.uint8)
|
| 127 |
-
logger.info(f"Segmented {key}")
|
| 128 |
-
except Exception as e:
|
| 129 |
-
logger.error(f"Segmentation failed for {key}: {e}")
|
| 130 |
-
pdata['soft_mask'] = np.zeros(composite.shape[:2], dtype=np.float32)
|
| 131 |
-
pdata['mask'] = np.zeros(composite.shape[:2], dtype=np.uint8)
|
| 132 |
return plants
|
| 133 |
|
| 134 |
def _extract_features(self, plants: Dict[str, Any]) -> Dict[str, Any]:
|
| 135 |
-
"""Extract
|
| 136 |
for key, pdata in plants.items():
|
| 137 |
-
|
| 138 |
-
pdata['texture_features'] = self._extract_texture_features(pdata)
|
| 139 |
-
pdata['vegetation_indices'] = self._extract_vegetation_indices(pdata)
|
| 140 |
-
pdata['morphology_features'] = self._extract_morphology_features(pdata)
|
| 141 |
-
logger.info(f"Features extracted for {key}")
|
| 142 |
-
except Exception as e:
|
| 143 |
-
logger.error(f"Feature extraction failed for {key}: {e}")
|
| 144 |
-
pdata['texture_features'] = {}
|
| 145 |
-
pdata['vegetation_indices'] = {}
|
| 146 |
-
pdata['morphology_features'] = {}
|
| 147 |
-
return plants
|
| 148 |
-
|
| 149 |
-
def _extract_texture_features(self, pdata: Dict[str, Any]) -> Dict[str, Any]:
|
| 150 |
-
"""Extract texture features from pseudo-color image only."""
|
| 151 |
-
features = {}
|
| 152 |
-
try:
|
| 153 |
-
# Only process pseudo-color composite
|
| 154 |
composite = pdata['composite']
|
| 155 |
mask = pdata.get('mask')
|
| 156 |
-
if mask is not None
|
| 157 |
-
|
| 158 |
-
gray_image = cv2.cvtColor(masked, cv2.COLOR_BGR2GRAY)
|
| 159 |
-
else:
|
| 160 |
-
gray_image = cv2.cvtColor(composite, cv2.COLOR_BGR2GRAY)
|
| 161 |
|
| 162 |
-
|
| 163 |
-
stats = self.texture_extractor.compute_texture_statistics(
|
|
|
|
| 164 |
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
|
|
|
|
|
|
| 172 |
|
| 173 |
-
return
|
| 174 |
|
| 175 |
-
def
|
| 176 |
-
"""
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
if not
|
| 181 |
-
|
| 182 |
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
arr = arr.squeeze(-1)
|
| 193 |
-
arrays.append(np.asarray(arr, dtype=np.float64))
|
| 194 |
-
|
| 195 |
-
values = self.vegetation_extractor.index_formulas[name](*arrays).astype(np.float64)
|
| 196 |
-
binary_mask = (np.asarray(mask).astype(np.int32) > 0)
|
| 197 |
-
masked_values = np.where(binary_mask, values, np.nan)
|
| 198 |
-
valid = masked_values[~np.isnan(masked_values)]
|
| 199 |
-
|
| 200 |
-
stats = {
|
| 201 |
-
'mean': float(np.mean(valid)) if valid.size else 0.0,
|
| 202 |
-
'std': float(np.std(valid)) if valid.size else 0.0,
|
| 203 |
-
'min': float(np.min(valid)) if valid.size else 0.0,
|
| 204 |
-
'max': float(np.max(valid)) if valid.size else 0.0,
|
| 205 |
-
'median': float(np.median(valid)) if valid.size else 0.0,
|
| 206 |
-
}
|
| 207 |
-
out[name] = {'values': masked_values, 'statistics': stats}
|
| 208 |
-
return out
|
| 209 |
-
except Exception as e:
|
| 210 |
-
logger.error(f"Vegetation index extraction failed: {e}")
|
| 211 |
-
return {}
|
| 212 |
-
|
| 213 |
-
def _extract_morphology_features(self, pdata: Dict[str, Any]) -> Dict[str, Any]:
|
| 214 |
-
"""Extract morphological features."""
|
| 215 |
-
try:
|
| 216 |
-
composite = pdata.get('composite')
|
| 217 |
-
mask = pdata.get('mask')
|
| 218 |
-
if composite is None or mask is None:
|
| 219 |
-
return {}
|
| 220 |
-
return self.morphology_extractor.extract_morphology_features(composite, mask)
|
| 221 |
-
except Exception as e:
|
| 222 |
-
logger.error(f"Morphology extraction failed: {e}")
|
| 223 |
-
return {}
|
| 224 |
-
|
| 225 |
-
def _generate_outputs(self, plants: Dict[str, Any]) -> None:
|
| 226 |
-
"""Generate output files."""
|
| 227 |
-
self.output_manager.create_output_directories()
|
| 228 |
-
for key, pdata in plants.items():
|
| 229 |
-
try:
|
| 230 |
-
self.output_manager.save_plant_results(key, pdata)
|
| 231 |
-
except Exception as e:
|
| 232 |
-
logger.error(f"Output generation failed for {key}: {e}")
|
| 233 |
-
|
| 234 |
-
def _create_summary(self, plants: Dict[str, Any]) -> Dict[str, Any]:
|
| 235 |
-
"""Create summary of results."""
|
| 236 |
-
return {
|
| 237 |
-
"total_plants": len(plants),
|
| 238 |
-
"successful_plants": sum(1 for p in plants.values() if p.get('texture_features')),
|
| 239 |
-
"features_extracted": {
|
| 240 |
-
"texture": sum(1 for p in plants.values() if p.get('texture_features')),
|
| 241 |
-
"vegetation": sum(1 for p in plants.values() if p.get('vegetation_indices')),
|
| 242 |
-
"morphology": sum(1 for p in plants.values() if p.get('morphology_features'))
|
| 243 |
}
|
| 244 |
-
|
|
|
|
|
|
| 1 |
"""
|
| 2 |
+
Minimal single-image pipeline for Hugging Face demo.
|
|
|
|
|
|
|
| 3 |
"""
|
| 4 |
|
|
|
|
| 5 |
import logging
|
| 6 |
from pathlib import Path
|
| 7 |
+
from typing import Dict, Any
|
| 8 |
import numpy as np
|
| 9 |
import cv2
|
|
|
|
| 10 |
|
| 11 |
from .config import Config
|
| 12 |
from .data import ImagePreprocessor, MaskHandler
|
|
|
|
| 18 |
|
| 19 |
|
| 20 |
class SorghumPipeline:
|
| 21 |
+
"""Minimal pipeline for single-image processing."""
|
| 22 |
|
| 23 |
def __init__(self, config: Config):
|
| 24 |
+
"""Initialize pipeline."""
|
| 25 |
+
logging.basicConfig(level=logging.INFO, format='%(levelname)s - %(message)s')
|
| 26 |
self.config = config
|
| 27 |
self.config.validate()
|
| 28 |
+
|
| 29 |
+
# Initialize components with defaults
|
| 30 |
+
self.preprocessor = ImagePreprocessor()
|
| 31 |
+
self.mask_handler = MaskHandler()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
self.texture_extractor = TextureExtractor()
|
| 33 |
self.vegetation_extractor = VegetationIndexExtractor()
|
| 34 |
self.morphology_extractor = MorphologyExtractor()
|
| 35 |
self.segmentation_manager = SegmentationManager(
|
|
|
|
| 36 |
device=self.config.get_device(),
|
|
|
|
| 37 |
trust_remote_code=True
|
| 38 |
)
|
| 39 |
self.output_manager = OutputManager(
|
| 40 |
output_folder=self.config.paths.output_folder,
|
| 41 |
settings=self.config.output
|
| 42 |
)
|
| 43 |
+
logger.info("Pipeline initialized")
|
| 44 |
|
| 45 |
def run(self, single_image_path: str) -> Dict[str, Any]:
|
| 46 |
+
"""Run pipeline on single image."""
|
| 47 |
+
logger.info("Processing single image...")
|
| 48 |
|
| 49 |
+
from PIL import Image
|
| 50 |
+
import time
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
+
start = time.perf_counter()
|
| 53 |
+
|
| 54 |
+
# Load image
|
| 55 |
+
img = Image.open(single_image_path)
|
| 56 |
+
plants = {
|
| 57 |
+
"demo": {
|
| 58 |
+
"raw_image": (img, Path(single_image_path).name),
|
| 59 |
+
"plant_name": "demo",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
}
|
| 61 |
+
}
|
| 62 |
+
|
| 63 |
+
# Process: composite → segment → features → save
|
| 64 |
+
plants = self.preprocessor.create_composites(plants)
|
| 65 |
+
plants = self._segment(plants)
|
| 66 |
+
plants = self._extract_features(plants)
|
| 67 |
+
self.output_manager.create_output_directories()
|
| 68 |
+
|
| 69 |
+
for key, pdata in plants.items():
|
| 70 |
+
self.output_manager.save_plant_results(key, pdata)
|
| 71 |
+
|
| 72 |
+
elapsed = time.perf_counter() - start
|
| 73 |
+
logger.info(f"Completed in {elapsed:.2f}s")
|
| 74 |
+
|
| 75 |
+
return {"plants": plants, "timing": elapsed}
|
| 76 |
|
| 77 |
+
def _segment(self, plants: Dict[str, Any]) -> Dict[str, Any]:
|
| 78 |
+
"""Segment using BRIA."""
|
| 79 |
for key, pdata in plants.items():
|
| 80 |
+
composite = pdata['composite']
|
| 81 |
+
soft_mask = self.segmentation_manager.segment_image_soft(composite)
|
| 82 |
+
pdata['mask'] = (soft_mask * 255.0).astype(np.uint8)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
return plants
|
| 84 |
|
| 85 |
def _extract_features(self, plants: Dict[str, Any]) -> Dict[str, Any]:
|
| 86 |
+
"""Extract texture, vegetation, and morphology features."""
|
| 87 |
for key, pdata in plants.items():
|
| 88 |
+
# Texture: LBP, HOG, Lacunarity from pseudo-color
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
composite = pdata['composite']
|
| 90 |
mask = pdata.get('mask')
|
| 91 |
+
masked = self.mask_handler.apply_mask_to_image(composite, mask) if mask is not None else composite
|
| 92 |
+
gray = cv2.cvtColor(masked, cv2.COLOR_BGR2GRAY)
|
|
|
|
|
|
|
|
|
|
| 93 |
|
| 94 |
+
feats = self.texture_extractor.extract_all_texture_features(gray)
|
| 95 |
+
stats = self.texture_extractor.compute_texture_statistics(feats, mask)
|
| 96 |
+
pdata['texture_features'] = {'color': {'features': feats, 'statistics': stats}}
|
| 97 |
|
| 98 |
+
# Vegetation: NDVI, ARI, GNDVI
|
| 99 |
+
spectral = pdata.get('spectral_stack', {})
|
| 100 |
+
if spectral and mask is not None:
|
| 101 |
+
pdata['vegetation_indices'] = self._compute_vegetation(spectral, mask)
|
| 102 |
+
else:
|
| 103 |
+
pdata['vegetation_indices'] = {}
|
| 104 |
+
|
| 105 |
+
# Morphology: PlantCV size analysis
|
| 106 |
+
pdata['morphology_features'] = self.morphology_extractor.extract_morphology_features(composite, mask)
|
| 107 |
|
| 108 |
+
return plants
|
| 109 |
|
| 110 |
+
def _compute_vegetation(self, spectral: Dict[str, np.ndarray], mask: np.ndarray) -> Dict[str, Any]:
|
| 111 |
+
"""Compute NDVI, ARI, GNDVI only."""
|
| 112 |
+
out = {}
|
| 113 |
+
for name in ("NDVI", "ARI", "GNDVI"):
|
| 114 |
+
bands = self.vegetation_extractor.index_bands.get(name, [])
|
| 115 |
+
if not all(b in spectral for b in bands):
|
| 116 |
+
continue
|
| 117 |
|
| 118 |
+
arrays = [np.asarray(spectral[b].squeeze(-1), dtype=np.float64) for b in bands]
|
| 119 |
+
values = self.vegetation_extractor.index_formulas[name](*arrays).astype(np.float64)
|
| 120 |
+
binary_mask = (mask > 0)
|
| 121 |
+
masked_values = np.where(binary_mask, values, np.nan)
|
| 122 |
+
valid = masked_values[~np.isnan(masked_values)]
|
| 123 |
+
|
| 124 |
+
stats = {
|
| 125 |
+
'mean': float(np.mean(valid)) if valid.size else 0.0,
|
| 126 |
+
'std': float(np.std(valid)) if valid.size else 0.0,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
}
|
| 128 |
+
out[name] = {'values': masked_values, 'statistics': stats}
|
| 129 |
+
return out
|
sorghum_pipeline/segmentation/__init__.py
CHANGED
|
@@ -1,12 +1,5 @@
|
|
| 1 |
-
"""
|
| 2 |
-
Segmentation modules for the Sorghum Pipeline.
|
| 3 |
-
|
| 4 |
-
This package contains segmentation functionality including:
|
| 5 |
-
- BRIA model integration
|
| 6 |
-
- Mask post-processing
|
| 7 |
-
- Segmentation validation
|
| 8 |
-
"""
|
| 9 |
|
| 10 |
from .manager import SegmentationManager
|
| 11 |
|
| 12 |
-
__all__ = ["SegmentationManager"]
|
|
|
|
| 1 |
+
"""Segmentation modules."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
from .manager import SegmentationManager
|
| 4 |
|
| 5 |
+
__all__ = ["SegmentationManager"]
|