import gradio as gr import tempfile from pathlib import Path from wrapper import run_pipeline_on_image import numpy as np from PIL import Image from itertools import product def process(image_path): if not image_path: return None, None, None, None, [], "" with tempfile.TemporaryDirectory() as tmpdir: # Copy uploaded file as-is to preserve format/bit-depth src = Path(image_path) ext = src.suffix.lstrip('.') or 'tif' img_path = Path(tmpdir) / f"input.{ext}" try: img_bytes = src.read_bytes() img_path.write_bytes(img_bytes) except Exception: # Fallback: save via PIL if direct copy fails Image.open(src).save(img_path) outputs = run_pipeline_on_image(str(img_path), tmpdir, save_artifacts=True) def load_pil(path_str): try: if not path_str: return None im = Image.open(path_str) im = im.convert('RGB') copied = im.copy() im.close() return copied except Exception: return None composite = load_pil(outputs.get('Composite')) overlay = load_pil(outputs.get('Overlay')) mask = load_pil(outputs.get('Mask')) size_img = load_pil(str(Path(tmpdir) / 'results/size.size_analysis.png')) # Texture LBP green path lbp_path = Path(tmpdir) / 'texture_output/lbp_green.png' texture_img = load_pil(str(lbp_path)) if lbp_path.exists() else None order = ['NDVI', 'GNDVI', 'SAVI'] gallery_items = [load_pil(outputs[k]) for k in order if k in outputs] stats_text = outputs.get('StatsText', '') return size_img, composite, mask, overlay, texture_img, gallery_items, stats_text with gr.Blocks() as demo: gr.Markdown("# 🌿 Automated Plant Analysis Demo") gr.Markdown("Upload a sorghum plant image to compute and visualize composite, mask, overlay, texture (LBP), vegetation indices, and statistics.") with gr.Row(): with gr.Column(): inp = gr.Image(type="filepath", label="Upload Image") run = gr.Button("Run Pipeline", variant="primary") with gr.Row(): size_img = gr.Image(type="pil", label="Morphology Size", interactive=False) composite_img = gr.Image(type="pil", label="Composite (Segmentation Input)", interactive=False) mask_img = gr.Image(type="pil", label="Mask", interactive=False) overlay_img = gr.Image(type="pil", label="Segmentation Overlay", interactive=False) with gr.Row(): texture_img = gr.Image(type="pil", label="Texture LBP (Green Band)", interactive=False) gallery = gr.Gallery(label="Vegetation Indices", columns=3, height="auto") stats = gr.Textbox(label="Statistics", lines=4) run.click(process, inputs=inp, outputs=[size_img, composite_img, mask_img, overlay_img, texture_img, gallery, stats]) if __name__ == "__main__": demo.launch()