""" Minimal single-image pipeline for Hugging Face demo. """ import logging from pathlib import Path from typing import Dict, Any import numpy as np import cv2 from .config import Config from .data import ImagePreprocessor, MaskHandler from .features import TextureExtractor, VegetationIndexExtractor, MorphologyExtractor from .output import OutputManager from .segmentation import SegmentationManager logger = logging.getLogger(__name__) class SorghumPipeline: """Minimal pipeline for single-image processing.""" def __init__(self, config: Config): """Initialize pipeline.""" logging.basicConfig(level=logging.INFO, format='%(levelname)s - %(message)s') self.config = config self.config.validate() # Initialize components with defaults self.preprocessor = ImagePreprocessor() self.mask_handler = MaskHandler() self.texture_extractor = TextureExtractor() self.vegetation_extractor = VegetationIndexExtractor() self.morphology_extractor = MorphologyExtractor() self.segmentation_manager = SegmentationManager( model_name="briaai/RMBG-2.0", device=self.config.get_device(), trust_remote_code=True ) self.output_manager = OutputManager( output_folder=self.config.paths.output_folder, settings=self.config.output ) logger.info("Pipeline initialized") def run(self, single_image_path: str) -> Dict[str, Any]: """Run pipeline on single image.""" logger.info("Processing single image...") from PIL import Image import time start = time.perf_counter() # Load image img = Image.open(single_image_path) plants = { "demo": { "raw_image": (img, Path(single_image_path).name), "plant_name": "demo", } } # Process: composite → segment → features → save plants = self.preprocessor.create_composites(plants) plants = self._segment(plants) plants = self._extract_features(plants) self.output_manager.create_output_directories() for key, pdata in plants.items(): self.output_manager.save_plant_results(key, pdata) elapsed = time.perf_counter() - start logger.info(f"Completed in {elapsed:.2f}s") return {"plants": plants, "timing": elapsed} def _segment(self, plants: Dict[str, Any]) -> Dict[str, Any]: """Segment using BRIA.""" for key, pdata in plants.items(): composite = pdata['composite'] logger.info(f"Composite shape: {composite.shape}") soft_mask = self.segmentation_manager.segment_image_soft(composite) logger.info(f"Soft mask shape: {soft_mask.shape}") mask_uint8 = (soft_mask * 255.0).astype(np.uint8) logger.info(f"Mask uint8 shape: {mask_uint8.shape}") pdata['mask'] = mask_uint8 return plants def _extract_features(self, plants: Dict[str, Any]) -> Dict[str, Any]: """Extract features (NDVI only for now).""" for key, pdata in plants.items(): composite = pdata['composite'] mask = pdata.get('mask') # Texture: ONLY LBP on green band within mask pdata['texture_features'] = {} green_band = None spectral = pdata.get('spectral_stack', {}) if 'green' in spectral: green_band = spectral['green'].squeeze(-1).astype(np.float64) if mask is not None: valid = np.where(mask > 0, green_band, np.nan) else: valid = green_band # normalize to uint8 for LBP v = valid.copy() v = np.nan_to_num(v, nan=np.nanmin(v)) m, M = np.min(v), np.max(v) denom = (M - m) if (M - m) > 1e-6 else 1.0 gray8 = ((v - m) / denom * 255.0).astype(np.uint8) lbp_map = self.texture_extractor.extract_lbp(gray8) pdata['texture_features'] = {'green': {'features': {'lbp': lbp_map}}} # Vegetation: NDVI, GNDVI, SAVI spectral = pdata.get('spectral_stack', {}) if spectral and mask is not None: pdata['vegetation_indices'] = self._compute_vegetation(spectral, mask) else: pdata['vegetation_indices'] = {} # # Morphology: PlantCV size analysis (COMMENTED OUT) # pdata['morphology_features'] = self.morphology_extractor.extract_morphology_features(composite, mask) pdata['morphology_features'] = {} return plants def _compute_vegetation(self, spectral: Dict[str, np.ndarray], mask: np.ndarray) -> Dict[str, Any]: """Compute NDVI, ARI, GNDVI only.""" out = {} for name in ("NDVI", "GNDVI", "SAVI"): bands = self.vegetation_extractor.index_bands.get(name, []) if not all(b in spectral for b in bands): continue arrays = [np.asarray(spectral[b].squeeze(-1), dtype=np.float64) for b in bands] values = self.vegetation_extractor.index_formulas[name](*arrays).astype(np.float64) binary_mask = (mask > 0) masked_values = np.where(binary_mask, values, np.nan) valid = masked_values[~np.isnan(masked_values)] stats = { 'mean': float(np.mean(valid)) if valid.size else 0.0, 'std': float(np.std(valid)) if valid.size else 0.0, } out[name] = {'values': masked_values, 'statistics': stats} return out