Spaces:
Running
on
Zero
Running
on
Zero
Upload folder using huggingface_hub
Browse files
app.py
CHANGED
|
@@ -1,8 +1,10 @@
|
|
| 1 |
import glob
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
import sys
|
| 4 |
import os
|
| 5 |
from PIL import Image
|
|
|
|
| 6 |
import spaces
|
| 7 |
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "../..")))
|
| 8 |
|
|
@@ -58,13 +60,18 @@ def generate_images(
|
|
| 58 |
"""Generate images using the LightDiffusion pipeline"""
|
| 59 |
try:
|
| 60 |
if img2img_enabled and img2img_image is not None:
|
| 61 |
-
#
|
| 62 |
-
img2img_image.
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
# Run pipeline and capture saved images
|
| 66 |
with torch.inference_mode():
|
| 67 |
-
|
| 68 |
prompt=prompt,
|
| 69 |
w=width,
|
| 70 |
h=height,
|
|
@@ -80,11 +87,18 @@ def generate_images(
|
|
| 80 |
prio_speed=prio_speed
|
| 81 |
)
|
| 82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
return load_generated_images()
|
| 84 |
|
| 85 |
except Exception as e:
|
| 86 |
import traceback
|
| 87 |
print(traceback.format_exc())
|
|
|
|
|
|
|
|
|
|
| 88 |
return [Image.new('RGB', (512, 512), color='black')]
|
| 89 |
|
| 90 |
# Create Gradio interface
|
|
|
|
| 1 |
import glob
|
| 2 |
+
import cv2
|
| 3 |
import gradio as gr
|
| 4 |
import sys
|
| 5 |
import os
|
| 6 |
from PIL import Image
|
| 7 |
+
import numpy as np
|
| 8 |
import spaces
|
| 9 |
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "../..")))
|
| 10 |
|
|
|
|
| 60 |
"""Generate images using the LightDiffusion pipeline"""
|
| 61 |
try:
|
| 62 |
if img2img_enabled and img2img_image is not None:
|
| 63 |
+
# Convert numpy array to PIL Image
|
| 64 |
+
if isinstance(img2img_image, np.ndarray):
|
| 65 |
+
# Convert BGR to RGB if needed
|
| 66 |
+
if img2img_image.shape[-1] == 3:
|
| 67 |
+
img2img_image = cv2.cvtColor(img2img_image, cv2.COLOR_BGR2RGB)
|
| 68 |
+
img_pil = Image.fromarray(img2img_image)
|
| 69 |
+
img_pil.save("temp_img2img.png")
|
| 70 |
+
prompt = "temp_img2img.png"
|
| 71 |
|
| 72 |
# Run pipeline and capture saved images
|
| 73 |
with torch.inference_mode():
|
| 74 |
+
pipeline(
|
| 75 |
prompt=prompt,
|
| 76 |
w=width,
|
| 77 |
h=height,
|
|
|
|
| 87 |
prio_speed=prio_speed
|
| 88 |
)
|
| 89 |
|
| 90 |
+
# Clean up temporary file if it exists
|
| 91 |
+
if os.path.exists("temp_img2img.png"):
|
| 92 |
+
os.remove("temp_img2img.png")
|
| 93 |
+
|
| 94 |
return load_generated_images()
|
| 95 |
|
| 96 |
except Exception as e:
|
| 97 |
import traceback
|
| 98 |
print(traceback.format_exc())
|
| 99 |
+
# Clean up temporary file if it exists
|
| 100 |
+
if os.path.exists("temp_img2img.png"):
|
| 101 |
+
os.remove("temp_img2img.png")
|
| 102 |
return [Image.new('RGB', (512, 512), color='black')]
|
| 103 |
|
| 104 |
# Create Gradio interface
|