ragchatbot / app.py
Abdelrahmann121's picture
Update app.py
f684524 verified
from datasets import load_dataset
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification, Wav2Vec2ForCTC, Wav2Vec2Processor
from sentence_transformers import SentenceTransformer
import numpy as np
import random
import faiss
import json
import logging
import re
import streamlit as st
from datetime import datetime
import os
import torch
import librosa
from gtts import gTTS
import tempfile
import io
import base64
import time
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# ============================
# AUDIO PROCESSING UTILITIES
# ============================
class AudioProcessor:
def __init__(self):
"""Initialize audio processing components"""
try:
# Load Wav2Vec2 model for speech-to-text
self.stt_processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
self.stt_model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
logger.info("βœ… STT model loaded successfully")
except Exception as e:
logger.error(f"❌ Error loading STT model: {e}")
self.stt_processor = None
self.stt_model = None
def speech_to_text_from_bytes(self, audio_bytes):
"""Convert speech to text from audio bytes"""
if not self.stt_processor or not self.stt_model:
return "STT model not available"
try:
# Create temporary file from bytes
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
tmp_file.write(audio_bytes)
tmp_file_path = tmp_file.name
# Load and preprocess audio
audio_input, sr = librosa.load(tmp_file_path, sr=16000)
# Clean up temp file
os.unlink(tmp_file_path)
# Check if audio is silent
if np.max(np.abs(audio_input)) < 0.01:
return "No speech detected. Please speak louder."
# Process audio
input_values = self.stt_processor(audio_input, return_tensors="pt", sampling_rate=16000).input_values
# Perform inference
with torch.no_grad():
logits = self.stt_model(input_values).logits
# Decode transcription
predicted_ids = torch.argmax(logits, dim=-1)
transcription = self.stt_processor.batch_decode(predicted_ids)[0]
return transcription.strip() if transcription.strip() else "Could not transcribe audio"
except Exception as e:
logger.error(f"Error in speech-to-text: {e}")
return f"Error processing audio: {str(e)}"
def text_to_speech(self, text, lang='en'):
"""Convert text to speech using gTTS"""
try:
# Create TTS object
tts = gTTS(text=text, lang=lang, slow=False)
# Save to temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
tts.save(tmp_file.name)
return tmp_file.name
except Exception as e:
logger.error(f"Error in text-to-speech: {e}")
return None
# ============================
# DATA PREPARATION
# ============================
def prepare_dataset():
"""Load and prepare the emotion dataset with error handling"""
try:
print("πŸ“Š Loading emotion dataset...")
# Load the dataset
ds = load_dataset("cardiffnlp/tweet_eval", "emotion")
# Define emotion labels (matching the dataset)
emotion_labels = ["anger", "joy", "optimism", "sadness"]
def clean_text(text):
"""Clean and preprocess text"""
text = text.lower()
text = re.sub(r"http\S+", "", text) # remove URLs
text = re.sub(r"[^\w\s]", "", text) # remove special characters
text = re.sub(r"\d+", "", text) # remove numbers
text = re.sub(r"\s+", " ", text) # normalize whitespace
return text.strip()
# Sample and prepare training data
train_data = ds['train']
train_sample = random.sample(list(train_data), min(1000, len(train_data)))
# Convert to RAG format
rag_json = []
for row in train_sample:
cleaned_text = clean_text(row['text'])
if len(cleaned_text) > 10: # Filter out very short texts
rag_json.append({
"text": cleaned_text,
"emotion": emotion_labels[row['label']],
"original_text": row['text']
})
print(f"Dataset prepared with {len(rag_json)} samples")
return rag_json
except Exception as e:
print(f"Warning: Could not load dataset: {e}")
# Return minimal fallback dataset
return [
{"text": "feeling happy and excited", "emotion": "joy"},
{"text": "really angry and frustrated", "emotion": "anger"},
{"text": "sad and lonely today", "emotion": "sadness"},
{"text": "optimistic about the future", "emotion": "optimism"}
]
# ============================
# FIXED EMOTION DETECTION MODEL
# ============================
class EmotionDetector:
def __init__(self):
# Try multiple emotion models in order of preference
self.model_options = [
"j-hartmann/emotion-english-distilroberta-base",
"cardiffnlp/twitter-roberta-base-emotion-latest",
"nateraw/bert-base-uncased-emotion",
"michellejieli/emotion_text_classifier"
]
self.model = None
self.tokenizer = None
self.classifier = None
# Try loading models in order
for model_name in self.model_options:
try:
st.info(f"πŸ”„ Trying to load {model_name}...")
# Force download and load with specific parameters
self.tokenizer = AutoTokenizer.from_pretrained(
model_name,
force_download=False,
resume_download=True
)
# Load model with specific device mapping to avoid meta tensor issues
self.model = AutoModelForSequenceClassification.from_pretrained(
model_name,
force_download=False,
resume_download=True,
device_map=None, # Don't use device_map
torch_dtype=torch.float32, # Specify dtype explicitly
low_cpu_mem_usage=False # Disable low_cpu_mem_usage
)
# Move to CPU explicitly if needed
if torch.cuda.is_available():
self.model = self.model.to('cpu')
self.classifier = pipeline(
"text-classification",
model=self.model,
tokenizer=self.tokenizer,
return_all_scores=False,
device=-1 # Force CPU usage
)
st.success(f"βœ… Successfully loaded {model_name}")
break
except Exception as e:
st.warning(f"⚠️ Failed to load {model_name}: {str(e)}")
continue
# Fallback to simple rule-based detection if all models fail
if self.classifier is None:
st.warning("⚠️ All emotion models failed. Using rule-based fallback.")
self.use_fallback = True
else:
self.use_fallback = False
def detect_emotion_fallback(self, text):
"""Simple rule-based emotion detection as fallback"""
text_lower = text.lower()
# Define keyword patterns for emotions
emotion_keywords = {
'joy': ['happy', 'joy', 'excited', 'thrilled', 'wonderful', 'amazing', 'great', 'fantastic', 'love', 'awesome'],
'anger': ['angry', 'mad', 'furious', 'annoyed', 'frustrated', 'irritated', 'hate', 'terrible', 'awful'],
'sadness': ['sad', 'depressed', 'upset', 'down', 'lonely', 'miserable', 'disappointed', 'heartbroken'],
'optimism': ['hope', 'optimistic', 'positive', 'confident', 'believe', 'future', 'better', 'improve']
}
# Count keyword matches
emotion_scores = {}
for emotion, keywords in emotion_keywords.items():
score = sum(1 for keyword in keywords if keyword in text_lower)
emotion_scores[emotion] = score
# Get emotion with highest score
if max(emotion_scores.values()) > 0:
detected_emotion = max(emotion_scores, key=emotion_scores.get)
confidence = min(emotion_scores[detected_emotion] * 0.3 + 0.4, 0.9) # Scale confidence
else:
detected_emotion = 'optimism' # Default
confidence = 0.5
return detected_emotion, confidence
def detect_emotion(self, text):
"""Detect emotion from text with fallback"""
if self.use_fallback or not text.strip():
return self.detect_emotion_fallback(text)
try:
result = self.classifier(text)
emotion = result[0]['label'].lower()
confidence = result[0]['score']
# Map model outputs to our emotion categories
emotion_mapping = {
'anger': 'anger',
'disgust': 'sadness',
'neutral': 'optimism',
'joy': 'joy',
'love': 'joy',
'happiness': 'joy',
'sadness': 'sadness',
'fear': 'sadness',
'surprise': 'optimism',
'optimism': 'optimism',
# Additional mappings for different model outputs
'positive': 'joy',
'negative': 'sadness',
'admiration': 'joy',
'amusement': 'joy',
'annoyance': 'anger',
'approval': 'optimism',
'caring': 'joy',
'confusion': 'sadness',
'curiosity': 'optimism',
'desire': 'optimism',
'disappointment': 'sadness',
'disapproval': 'anger',
'embarrassment': 'sadness',
'excitement': 'joy',
'gratitude': 'joy',
'grief': 'sadness',
'nervousness': 'sadness',
'pride': 'joy',
'realization': 'optimism',
'relief': 'joy',
'remorse': 'sadness'
}
mapped_emotion = emotion_mapping.get(emotion, 'optimism')
return mapped_emotion, confidence
except Exception as e:
logger.error(f"Error in emotion detection: {e}")
# Fall back to rule-based detection
return self.detect_emotion_fallback(text)
# ============================
# LIGHTWEIGHT EMOTION DETECTOR (ALTERNATIVE)
# ============================
class LightweightEmotionDetector:
"""A simple, reliable emotion detector that doesn't rely on heavy models"""
def __init__(self):
# Enhanced keyword-based emotion detection
self.emotion_patterns = {
'joy': {
'keywords': ['happy', 'joy', 'joyful', 'excited', 'thrilled', 'wonderful', 'amazing', 'great', 'fantastic',
'love', 'awesome', 'brilliant', 'perfect', 'delighted', 'cheerful', 'elated', 'glad', 'pleased'],
'phrases': ['feel good', 'so happy', 'really excited', 'love it', 'makes me happy', 'feeling great']
},
'anger': {
'keywords': ['angry', 'mad', 'furious', 'annoyed', 'frustrated', 'irritated', 'hate', 'terrible', 'awful',
'disgusting', 'outraged', 'livid', 'enraged', 'pissed', 'infuriated', 'resentful'],
'phrases': ['so angry', 'really mad', 'hate it', 'makes me angry', 'fed up', 'sick of']
},
'sadness': {
'keywords': ['sad', 'depressed', 'upset', 'down', 'lonely', 'miserable', 'disappointed', 'heartbroken',
'devastated', 'hopeless', 'melancholy', 'sorrowful', 'dejected', 'despondent', 'gloomy'],
'phrases': ['feel sad', 'so down', 'really upset', 'makes me sad', 'feeling low', 'broken hearted']
},
'optimism': {
'keywords': ['hope', 'hopeful', 'optimistic', 'positive', 'confident', 'believe', 'future', 'better',
'improve', 'progress', 'opportunity', 'potential', 'bright', 'promising', 'encouraging'],
'phrases': ['looking forward', 'things will get better', 'positive about', 'have hope', 'bright future']
}
}
def detect_emotion(self, text):
"""Detect emotion using enhanced pattern matching"""
if not text.strip():
return 'optimism', 0.5
text_lower = text.lower()
emotion_scores = {emotion: 0 for emotion in self.emotion_patterns.keys()}
# Score based on keywords and phrases
for emotion, patterns in self.emotion_patterns.items():
# Keyword matching
for keyword in patterns['keywords']:
if keyword in text_lower:
emotion_scores[emotion] += 1
# Phrase matching (higher weight)
for phrase in patterns['phrases']:
if phrase in text_lower:
emotion_scores[emotion] += 2
# Intensity modifiers
intensifiers = ['very', 'really', 'extremely', 'so', 'absolutely', 'totally', 'completely']
intensity_boost = sum(1 for word in intensifiers if word in text_lower) * 0.5
# Get the emotion with highest score
if max(emotion_scores.values()) > 0:
detected_emotion = max(emotion_scores, key=emotion_scores.get)
base_confidence = min(emotion_scores[detected_emotion] * 0.2 + 0.5, 0.95)
confidence = min(base_confidence + intensity_boost * 0.1, 0.98)
else:
detected_emotion = 'optimism' # Default to optimism
confidence = 0.6
return detected_emotion, confidence
# ============================
# RAG SYSTEM WITH FAISS
# ============================
class RAGSystem:
"""
Retrieval-Augmented Generation (RAG) system for selecting text templates
based on user input and detected emotion.
"""
def __init__(self, rag_data):
self.rag_data = rag_data
self.texts = [entry['text'] for entry in rag_data]
if len(self.texts) == 0:
st.warning("⚠️ No RAG data available. Using simple responses.")
self.embed_model = None
self.embeddings = None
self.index = None
return
try:
# Initialize embedding model
self.embed_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
# Create embeddings
self.embeddings = self.embed_model.encode(
self.texts,
convert_to_numpy=True,
show_progress_bar=False
)
# Create FAISS index
dimension = self.embeddings.shape[1]
self.index = faiss.IndexFlatL2(dimension)
self.index.add(self.embeddings)
except Exception as e:
st.warning(f"⚠️ Could not initialize RAG system: {e}")
self.embed_model = None
self.embeddings = None
self.index = None
def retrieve_templates(self, user_input, detected_emotion, top_k=3):
"""Retrieve relevant templates based on emotion and similarity"""
if not self.embed_model or not self.index:
return []
try:
# Filter by emotion first
emotion_filtered_indices = [
i for i, entry in enumerate(self.rag_data)
if entry['emotion'] == detected_emotion
]
if not emotion_filtered_indices:
emotion_filtered_indices = list(range(len(self.rag_data)))
# Get filtered embeddings
filtered_embeddings = self.embeddings[emotion_filtered_indices]
filtered_texts = [self.texts[i] for i in emotion_filtered_indices]
# Create temporary index for filtered data
temp_index = faiss.IndexFlatL2(filtered_embeddings.shape[1])
temp_index.add(filtered_embeddings)
# Search for similar templates
user_embedding = self.embed_model.encode([user_input], convert_to_numpy=True)
distances, indices = temp_index.search(
user_embedding,
min(top_k, len(filtered_texts))
)
# Top templates
top_templates = [filtered_texts[i] for i in indices[0]]
return top_templates
except Exception as e:
logger.error(f"Error in template retrieval: {e}")
return []
# ============================
# RESPONSE GENERATOR
# ============================
class ResponseGenerator:
def __init__(self, emotion_detector, rag_system):
self.emotion_detector = emotion_detector
self.rag_system = rag_system
# Empathetic response templates by emotion
self.response_templates = {
'anger': [
"I can understand why you're feeling frustrated. It's completely valid to feel this way.",
"Your anger is understandable. Sometimes situations can be really challenging.",
"I hear that you're upset, and that's okay. These feelings are important."
],
'sadness': [
"I'm sorry you're going through a difficult time. Your feelings are valid.",
"It sounds like you're dealing with something really tough right now.",
"I can sense your sadness, and I want you to know that it's okay to feel this way."
],
'joy': [
"I'm so happy to hear about your positive experience! That's wonderful.",
"Your joy is contagious! It's great to hear such positive news.",
"I love hearing about things that make you happy. That sounds amazing!"
],
'optimism': [
"Your positive outlook is inspiring. That's a great way to look at things.",
"I appreciate your hopeful perspective. That's really encouraging.",
"It's wonderful to hear your optimistic thoughts. Keep that positive energy!"
],
'neutral': [
"Thanks for sharing that. I hear you.",
"I understand. Let's continue exploring this topic together.",
"I appreciate you telling me that. Let's keep going."
]
}
def generate_response(self, user_input, top_k=3):
"""Generate empathetic response using RAG and few-shot prompting"""
try:
# Step 1: Detect emotion
detected_emotion, confidence = self.emotion_detector.detect_emotion(user_input)
# Step 2: Retrieve relevant templates (if RAG is available)
templates = []
if self.rag_system and self.rag_system.embed_model:
templates = self.rag_system.retrieve_templates(
user_input,
detected_emotion,
top_k=top_k
)
# Step 3: Create response using templates and emotion
base_responses = self.response_templates.get(
detected_emotion,
self.response_templates['optimism']
)
# Combine base response with context from templates
selected_base = random.choice(base_responses)
# Create contextual response
if templates:
context_template = random.choice(templates)
# Enhanced response generation
response = f"{selected_base} I can relate to what you're sharing - {context_template[:80]}. Remember that your feelings are important and valid."
else:
response = selected_base
# Add disclaimer
disclaimer = "\n\n⚠️ This is an automated response. For serious emotional concerns, please consult a mental health professional."
return response + disclaimer, detected_emotion, confidence
except Exception as e:
error_msg = f"I apologize, but I encountered an error: {str(e)}"
disclaimer = "\n\n⚠️ This is an automated response. Please consult a professional if needed."
return error_msg + disclaimer, 'neutral', 0.0
# ============================
# SIMPLE RESPONSE GENERATOR (FALLBACK)
# ============================
class SimpleResponseGenerator:
"""Simplified response generator that works without RAG"""
def __init__(self, emotion_detector):
self.emotion_detector = emotion_detector
# Enhanced response templates
self.response_templates = {
'anger': [
"I can understand why you're feeling frustrated. It's completely valid to feel this way. Sometimes situations can be really challenging, and it's important to acknowledge these feelings.",
"Your anger is understandable. When things don't go as expected, it's natural to feel upset. Would you like to talk about what's causing these feelings?",
"I hear that you're upset, and that's okay. These feelings are important and deserve attention. Take a moment to breathe if you need it."
],
'sadness': [
"I'm sorry you're going through a difficult time. Your feelings are valid, and it's okay to feel sad sometimes. Remember that this feeling will pass.",
"It sounds like you're dealing with something really tough right now. I want you to know that it's perfectly normal to feel this way, and you're not alone.",
"I can sense your sadness, and I want you to know that it's okay to feel this way. Sometimes life presents us with challenges that naturally make us feel down."
],
'joy': [
"I'm so happy to hear about your positive experience! That's wonderful, and your joy is really uplifting. It's great when life gives us these beautiful moments.",
"Your joy is contagious! It's amazing to hear such positive news. These happy moments are precious and worth celebrating.",
"I love hearing about things that make you happy. That sounds absolutely amazing! Your enthusiasm is really inspiring."
],
'optimism': [
"Your positive outlook is truly inspiring. That's such a great way to look at things, and your hopefulness is really encouraging.",
"I appreciate your hopeful perspective. That kind of optimism can make such a difference, not just for you but for others around you too.",
"It's wonderful to hear your optimistic thoughts. Keep that positive energy flowing - it's a powerful force for good!"
]
}
def generate_response(self, user_input, top_k=3):
"""Generate response without RAG system"""
try:
# Detect emotion
detected_emotion, confidence = self.emotion_detector.detect_emotion(user_input)
# Get appropriate response template
templates = self.response_templates.get(detected_emotion, self.response_templates['optimism'])
selected_response = random.choice(templates)
# Add personalized touch based on input length and content
if len(user_input) > 100:
selected_response += " I can see you've shared quite a bit with me, and I appreciate your openness."
elif any(word in user_input.lower() for word in ['help', 'advice', 'what should']):
selected_response += " If you'd like to talk more about this, I'm here to listen."
# Add disclaimer
disclaimer = "\n\n⚠️ This is an automated response. For serious emotional concerns, please consult a mental health professional."
return selected_response + disclaimer, detected_emotion, confidence
except Exception as e:
error_msg = f"I apologize, but I encountered an error: {str(e)}"
disclaimer = "\n\n⚠️ This is an automated response. Please consult a professional if needed."
return error_msg + disclaimer, 'optimism', 0.0
# ============================
# STREAMLIT APP
# ============================
def main():
# Page config with better settings
st.set_page_config(
page_title="Empathetic AI Companion",
page_icon="πŸ€–",
layout="wide",
initial_sidebar_state="expanded"
)
# CSS with modern design
st.markdown("""
<style>
/* Import Google Fonts */
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap');
/* Global styles */
.stApp {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
font-family: 'Inter', sans-serif;
}
/* Main header - more elegant */
.main-header {
background: rgba(255, 255, 255, 0.15);
padding: 2rem;
border-radius: 20px;
text-align: center;
margin-bottom: 2rem;
backdrop-filter: blur(20px);
border: 1px solid rgba(255, 255, 255, 0.2);
color: white;
box-shadow: 0 8px 32px rgba(0,0,0,0.1);
transition: all 0.3s ease;
}
.main-header:hover {
transform: translateY(-5px);
box-shadow: 0 12px 40px rgba(0,0,0,0.2);
}
.main-header h1 {
font-size: 2.5rem;
font-weight: 700;
margin-bottom: 0.5rem;
background: linear-gradient(45deg, #fff, #f0f0f0);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
}
.main-header p {
font-size: 1.2rem;
opacity: 0.9;
font-weight: 400;
margin: 0;
}
/* Improved chat messages */
.chat-message {
margin-bottom: 1.5rem;
animation: fadeInUp 0.5s ease;
}
@keyframes fadeInUp {
from { opacity: 0; transform: translateY(20px); }
to { opacity: 1; transform: translateY(0); }
}
.user-message {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
padding: 1rem 1.5rem;
border-radius: 20px 20px 5px 20px;
margin-left: auto;
margin-right: 0;
max-width: 75%;
box-shadow: 0 4px 15px rgba(102, 126, 234, 0.3);
font-weight: 500;
line-height: 1.5;
}
.bot-message {
background: linear-gradient(to top, #a18cd1 0%, #fbc2eb 100%);;
color: white;
padding: 1rem 1.5rem;
border-radius: 20px 20px 20px 5px;
margin-left: 0;
margin-right: auto;
max-width: 75%;
box-shadow: 0 4px 15px rgba(240, 147, 251, 0.3);
font-weight: 500;
line-height: 1.5;
}
/* Message headers */
.message-header {
font-size: 0.85rem;
opacity: 0.9;
margin-bottom: 0.5rem;
font-weight: 600;
}
/* Emotion badges - hidden but styled */
.emotion-badge {
display: inline-block;
padding: 0.2rem 0.6rem;
border-radius: 12px;
font-size: 0.75rem;
font-weight: 600;
margin-left: 0.5rem;
opacity: 0.8;
}
/* Enhanced buttons */
.stButton > button {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
color: white !important;
border: none !important;
border-radius: 50px !important;
padding: 1rem 2rem !important;
font-weight: 600 !important;
font-size: 1rem !important;
transition: all 0.3s ease !important;
box-shadow: 0 6px 20px rgba(102, 126, 234, 0.3) !important;
min-height: 50px !important;
}
.stButton > button:hover {
transform: translateY(-3px) !important;
box-shadow: 0 8px 25px rgba(102, 126, 234, 0.4) !important;
background: linear-gradient(135deg, #7c8ff0 0%, #8a5ab8 100%) !important;
}
/* Play button styling */
.play-button {
background: linear-gradient(135deg, #28a745 0%, #20c997 100%) !important;
border-radius: 25px !important;
padding: 0.5rem 1rem !important;
font-size: 0.9rem !important;
margin-top: 0.5rem !important;
box-shadow: 0 4px 15px rgba(40, 167, 69, 0.3) !important;
}
/* Sidebar enhancements */
.css-1d391kg {
background: rgba(255, 255, 255, 0.1) !important;
backdrop-filter: blur(20px) !important;
}
/* Stats and metrics */
.metric-card {
background: rgba(255, 255, 255, 0.9);
padding: 1.5rem;
border-radius: 15px;
text-align: center;
box-shadow: 0 4px 15px rgba(0,0,0,0.05);
margin-bottom: 1rem;
transition: transform 0.3s ease;
}
.metric-card:hover {
transform: translateY(-3px);
}
/* Progress bars */
.stProgress > div > div > div {
background: linear-gradient(90deg, #667eea, #764ba2) !important;
border-radius: 10px !important;
}
/* Hide default Streamlit elements */
.stDeployButton {display: none;}
footer {visibility: hidden;}
.stApp > header {visibility: hidden;}
/* Custom scrollbar */
.chat-container::-webkit-scrollbar {
width: 6px;
}
/* πŸ”Š Audio recorder container fix */
.audio-recorder-container {
background: transparent !important;
border: none !important;
box-shadow: none !important;
padding: 0 !important;
margin: 0 !important;
}
/* 🎀 Recorder button style */
.audio-recorder-container button {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
color: #fff !important;
border: none !important;
border-radius: 50% !important; /* Makes it a perfect circle */
width: 60px !important;
height: 60px !important;
font-size: 1.2rem !important;
font-weight: bold !important;
cursor: pointer !important;
box-shadow: 0 4px 12px rgba(0,0,0,0.25) !important;
transition: all 0.3s ease !important;
}
/* Hover effect */
.audio-recorder-container button:hover {
transform: scale(1.08);
box-shadow: 0 6px 18px rgba(0,0,0,0.35) !important;
}
</style>
""", unsafe_allow_html=True)
# Enhanced Header with animation
st.markdown("""
<div class="main-header">
<h1>πŸ€– Empathetic AI Companion</h1>
<p>Your intelligent partner for emotional support and meaningful conversations</p>
</div>
""", unsafe_allow_html=True)
# Initialize session state
if "chat_history" not in st.session_state:
st.session_state.chat_history = []
if "initialized" not in st.session_state:
initialize_chatbot()
if "audio_processor" not in st.session_state:
st.session_state.audio_processor = AudioProcessor()
if "last_transcription" not in st.session_state:
st.session_state.last_transcription = ""
# Enhanced Sidebar
with st.sidebar:
st.markdown("### πŸŽ›οΈ Control Panel")
# Voice Settings Section
with st.expander("πŸŽ™οΈ Voice Settings", expanded=True):
tts_language = st.selectbox(
"Text-to-Speech ptions",
options=['en', 'es', 'fr', 'de', 'it'],
index=0,
help="Choose your preferred TTS accent"
)
st.session_state.tts_language = tts_language
auto_tts = st.toggle(
"Auto-play Bot Responses",
value=False,
help="Automatically play TTS for all bot responses"
)
st.session_state.auto_tts = auto_tts
st.divider()
# Enhanced Statistics Section
if st.session_state.chat_history:
with st.expander("πŸ“Š Session Analytics", expanded=False):
emotions = [chat['emotion'] for chat in st.session_state.chat_history if 'emotion' in chat]
if emotions:
emotion_counts = {}
for emotion in emotions:
emotion_counts[emotion] = emotion_counts.get(emotion, 0) + 1
# Display emotion distribution
for emotion, count in emotion_counts.items():
percentage = (count / len(emotions)) * 100
st.metric(
f"{emotion.title()}",
f"{count} messages",
f"{percentage:.1f}%"
)
# Quick Actions
with st.expander("⚑ Quick Actions", expanded=True):
col1, col2 = st.columns(2)
with col1:
if st.button("πŸ§ͺ Test AI", use_container_width=True):
test_emotion_detection()
with col2:
if st.button("πŸ—‘οΈ Clear Chat", use_container_width=True):
st.session_state.chat_history = []
st.session_state.last_transcription = ""
st.rerun()
st.divider()
# Sample Messages - More engaging
with st.expander("πŸ’‘ Try These Messages", expanded=False):
sample_messages = [
("😊", "I'm feeling really happy today!"),
("😀", "I'm so frustrated with everything"),
("😒", "I feel really sad and alone"),
("🌟", "I'm excited about my future!")
]
for i, (emoji, msg) in enumerate(sample_messages):
if st.button(f"{emoji} {msg[:20]}...", key=f"sample_{i}", use_container_width=True):
process_message(msg)
st.rerun()
st.divider()
# Enhanced Info Section
st.markdown("""
<div style="background: rgba(255,255,255,0.1); padding: 1rem; border-radius: 10px; backdrop-filter: blur(10px);">
<h4 style="color: white; margin-bottom: 0.5rem;">✨ Features</h4>
<ul style="color: rgba(255,255,255,0.9); font-size: 0.9rem; margin: 0;">
<li>🎀 Voice Recording & STT</li>
<li>πŸ”Š Natural TTS Responses</li>
<li>😊 Advanced Emotion AI</li>
<li>πŸ’¬ Context-Aware Replies</li>
<li>πŸ“Š Real-time Analytics</li>
</ul>
</div>
""", unsafe_allow_html=True)
# Main Layout - Improved
col_main, col_stats = st.columns([7, 3])
with col_main:
# Enhanced Chat Display
st.markdown('<div class="chat-container">', unsafe_allow_html=True)
if st.session_state.chat_history:
for i, chat in enumerate(st.session_state.chat_history[-15:]): # Show more messages
# User message with better styling
st.markdown(f"""
<div class="chat-message">
<div class="user-message">
<div class="message-header">πŸ§‘ You β€’ {chat['timestamp']}</div>
{chat['user']}
</div>
</div>
""", unsafe_allow_html=True)
# Bot response with enhanced styling
emotion_class = chat.get('emotion', 'optimism')
confidence = chat.get('confidence', 0.0)
st.markdown(f"""
<div class="chat-message">
<div class="bot-message">
<div class="message-header">
πŸ€– AI Assistant
<span class="emotion-badge {emotion_class}">
{emotion_class.title()} {confidence:.0%}
</span>
</div>
{chat['bot'].replace('⚠️', '⚠️ ')}
</div>
</div>
""", unsafe_allow_html=True)
# Enhanced TTS button
col_tts, col_spacer = st.columns([2, 6])
with col_tts:
if st.button(f"πŸ”Š Play Audio", key=f"tts_{i}", help="Listen to response"):
play_tts(chat['bot'])
# Auto-play logic
if (st.session_state.auto_tts and
i == len(st.session_state.chat_history) - 1 and
chat.get('should_play_tts', False)):
play_tts(chat['bot'])
st.session_state.chat_history[-1]['should_play_tts'] = False
# Enhanced Input Section
st.markdown('<div class="input-section">', unsafe_allow_html=True)
# Input layout
col_text = st.container()
col_voice, col_send = st.columns(2)
with col_text:
user_input = st.text_input(
"",
placeholder="Share what's on your mind... How can I help you today?",
label_visibility="collapsed",
key="main_input"
)
from audio_recorder_streamlit import audio_recorder
with col_voice:
audio_bytes = audio_recorder()
if audio_bytes:
st.audio(audio_bytes, format="audio/wav")
with col_send:
if st.button("πŸ“€ Send Message", type="primary", key="send_btn", use_container_width=True):
if user_input.strip():
process_message(user_input.strip())
st.rerun()
# Voice processing with better feedback
if audio_bytes is not None:
with st.spinner("πŸ”„ Processing your voice..."):
transcription = st.session_state.audio_processor.speech_to_text_from_bytes(audio_bytes)
if transcription and transcription not in ["No speech detected. Please speak louder.", "Could not transcribe audio"]:
st.success(f"πŸŽ™οΈ **Transcribed:** \"{transcription}\"")
if transcription != st.session_state.last_transcription:
st.session_state.last_transcription = transcription
process_message(transcription, from_voice=True)
st.rerun()
else:
st.warning(f"⚠️ {transcription}")
st.markdown('</div>', unsafe_allow_html=True)
# Enhanced Statistics Panel
with col_stats:
if st.session_state.chat_history:
st.markdown("### πŸ“ˆ Live Insights")
# Emotion trends
recent_emotions = [
chat.get('emotion', 'optimism')
for chat in st.session_state.chat_history[-10:]
if 'emotion' in chat
]
if recent_emotions:
st.markdown("**Recent Emotions:**")
emotion_scores = {'anger': 0, 'sadness': 0, 'joy': 0, 'optimism': 0}
for emotion in recent_emotions:
emotion_scores[emotion] = emotion_scores.get(emotion, 0) + 1
total = len(recent_emotions)
for emotion, count in emotion_scores.items():
if count > 0:
progress = count / total
st.progress(progress, text=f"{emotion.title()}: {count}/{total}")
# Session metrics
if len(st.session_state.chat_history) > 2:
st.divider()
st.markdown("**Session Overview:**")
total_messages = len(st.session_state.chat_history)
emotions = [chat.get('emotion', 'optimism') for chat in st.session_state.chat_history]
# Metrics cards
st.metric("Messages", total_messages)
if emotions:
most_common = max(set(emotions), key=emotions.count)
st.metric("Dominant Emotion", most_common.title())
# Mood indicator
positive_emotions = ['joy', 'optimism']
positive_count = sum(1 for e in emotions if e in positive_emotions)
mood_score = positive_count / len(emotions)
if mood_score > 0.6:
st.success("😊 Positive Mood")
elif mood_score > 0.4:
st.info("😐 Balanced Mood")
else:
st.warning("πŸ˜” Needs Support")
else:
# Getting started tips
st.markdown("""
### πŸš€ Getting Started
**Tips for better conversations:**
- Be specific about your feelings
- Share context about your situation
- Use voice input for natural interaction
- Try the sample messages below
**Privacy Note:**
Your conversations are processed locally and not stored permanently.
""")
def initialize_chatbot():
"""Initialize the chatbot components with better feedback"""
with st.spinner("πŸš€ Loading AI models..."):
try:
progress_bar = st.progress(0)
status_text = st.empty()
# Load dataset
status_text.text("πŸ“Š Loading emotion dataset...")
progress_bar.progress(25)
st.session_state.rag_data = prepare_dataset()
# Initialize emotion detector
status_text.text("🧠 Loading emotion detection model...")
progress_bar.progress(50)
st.session_state.emotion_detector = EmotionDetector()
# Initialize RAG system
status_text.text("πŸ” Setting up knowledge retrieval...")
progress_bar.progress(75)
st.session_state.rag_system = RAGSystem(st.session_state.rag_data)
# Initialize response generator
status_text.text("πŸ’¬ Preparing response generation...")
progress_bar.progress(100)
st.session_state.response_generator = ResponseGenerator(
st.session_state.emotion_detector,
st.session_state.rag_system
)
st.session_state.initialized = True
# Clear loading elements
progress_bar.empty()
status_text.empty()
st.success("βœ… AI Companion ready! Start your conversation below.")
except Exception as e:
st.error(f"❌ Failed to initialize: {str(e)}")
st.info("πŸ’‘ Try refreshing the page or check your internet connection.")
st.stop()
def process_message(user_input, from_voice=False):
"""Enhanced message processing with better error handling"""
if not user_input.strip():
return
try:
# Show typing indicator
with st.spinner("πŸ€– AI is thinking..."):
# Generate response
bot_response, detected_emotion, confidence = st.session_state.response_generator.generate_response(
user_input,
top_k=3
)
# Create chat entry
chat_entry = {
'user': user_input,
'bot': bot_response,
'emotion': detected_emotion,
'confidence': confidence,
'timestamp': datetime.now().strftime("%H:%M"),
'from_voice': from_voice,
'should_play_tts': st.session_state.get('auto_tts', False)
}
st.session_state.chat_history.append(chat_entry)
# Log interaction
logger.info(f"User ({'Voice' if from_voice else 'Text'}): {user_input[:50]}... | Emotion: {detected_emotion} ({confidence:.2f})")
except Exception as e:
st.error(f"❌ Something went wrong: {str(e)}")
st.info("πŸ’‘ Please try again or rephrase your message.")
logger.error(f"Processing error: {e}")
def play_tts(text):
"""Enhanced TTS with better error handling"""
try:
# Clean text for TTS
clean_text = re.sub(r'[^\w\s\.\,\!\?\']', '', text)
clean_text = clean_text.replace('⚠️', '').strip()
if not clean_text:
return
# Generate TTS
tts_lang = st.session_state.get('tts_language', 'en')
with st.spinner("πŸ”Š Generating audio..."):
audio_file = st.session_state.audio_processor.text_to_speech(
clean_text[:500], # Limit length
lang=tts_lang
)
if audio_file:
with open(audio_file, 'rb') as f:
audio_bytes = f.read()
st.audio(audio_bytes, format='audio/mp3', autoplay=True)
os.unlink(audio_file) # Clean up
except Exception as e:
logger.error(f"TTS error: {e}")
st.toast("⚠️ Could not generate audio", icon="πŸ”Š")
def test_emotion_detection():
"""Enhanced emotion testing with better display"""
test_texts = [
"I'm absolutely thrilled about my new promotion!",
"I feel completely overwhelmed and sad today",
"This traffic is making me so angry and frustrated!",
"I have hope that everything will work out perfectly"
]
st.markdown("### πŸ§ͺ Emotion Detection Demo")
for i, text in enumerate(test_texts):
with st.container():
emotion, confidence = st.session_state.emotion_detector.detect_emotion(text)
col1, col2 = st.columns([3, 1])
with col1:
st.write(f"**Text:** {text}")
st.write(f"**Detected:** {emotion.title()} ({confidence:.1%} confidence)")
with col2:
# Emotion emoji mapping
emoji_map = {'anger': '😠', 'sadness': '😒', 'joy': '😊', 'optimism': '🌟'}
st.markdown(f"### {emoji_map.get(emotion, 'πŸ€”')}")
if i < len(test_texts) - 1:
st.divider()
if __name__ == "__main__":
main()