Spaces:
Running
on
Zero
Running
on
Zero
| #!/usr/bin/env python | |
| import os | |
| import re | |
| import tempfile | |
| from collections.abc import Iterator | |
| from threading import Thread | |
| import cv2 | |
| import gradio as gr | |
| import spaces | |
| import torch | |
| from loguru import logger | |
| from PIL import Image | |
| from transformers import AutoProcessor, AutoModelForImageTextToText, TextIteratorStreamer | |
| model_id = os.getenv("MODEL_ID", "google/medgemma-4b-it") | |
| processor = AutoProcessor.from_pretrained(model_id) | |
| model = AutoModelForImageTextToText.from_pretrained( | |
| model_id, device_map="auto", torch_dtype=torch.bfloat16 | |
| ) | |
| MAX_NUM_IMAGES = int(os.getenv("MAX_NUM_IMAGES", "5")) | |
| def count_files_in_new_message(paths: list[str]) -> tuple[int, int]: | |
| image_count = 0 | |
| video_count = 0 | |
| for path in paths: | |
| if path.endswith(".mp4"): | |
| video_count += 1 | |
| else: | |
| image_count += 1 | |
| return image_count, video_count | |
| def count_files_in_history(history: list[dict]) -> tuple[int, int]: | |
| image_count = 0 | |
| video_count = 0 | |
| for item in history: | |
| if item["role"] != "user" or isinstance(item["content"], str): | |
| continue | |
| if item["content"][0].endswith(".mp4"): | |
| video_count += 1 | |
| else: | |
| image_count += 1 | |
| return image_count, video_count | |
| def validate_media_constraints(message: dict, history: list[dict]) -> bool: | |
| new_image_count, new_video_count = count_files_in_new_message(message["files"]) | |
| history_image_count, history_video_count = count_files_in_history(history) | |
| image_count = history_image_count + new_image_count | |
| video_count = history_video_count + new_video_count | |
| if video_count > 1: | |
| gr.Warning("Only one video is supported.") | |
| return False | |
| if video_count == 1: | |
| if image_count > 0: | |
| gr.Warning("Mixing images and videos is not allowed.") | |
| return False | |
| if "<image>" in message["text"]: | |
| gr.Warning("Using <image> tags with video files is not supported.") | |
| return False | |
| if video_count == 0 and image_count > MAX_NUM_IMAGES: | |
| gr.Warning(f"You can upload up to {MAX_NUM_IMAGES} images.") | |
| return False | |
| if "<image>" in message["text"] and message["text"].count("<image>") != new_image_count: | |
| gr.Warning("The number of <image> tags in the text does not match the number of images.") | |
| return False | |
| return True | |
| def downsample_video(video_path: str) -> list[tuple[Image.Image, float]]: | |
| vidcap = cv2.VideoCapture(video_path) | |
| fps = vidcap.get(cv2.CAP_PROP_FPS) | |
| total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
| frame_interval = max(total_frames // MAX_NUM_IMAGES, 1) | |
| frames: list[tuple[Image.Image, float]] = [] | |
| for i in range(0, min(total_frames, MAX_NUM_IMAGES * frame_interval), frame_interval): | |
| if len(frames) >= MAX_NUM_IMAGES: | |
| break | |
| vidcap.set(cv2.CAP_PROP_POS_FRAMES, i) | |
| success, image = vidcap.read() | |
| if success: | |
| image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
| pil_image = Image.fromarray(image) | |
| timestamp = round(i / fps, 2) | |
| frames.append((pil_image, timestamp)) | |
| vidcap.release() | |
| return frames | |
| def process_video(video_path: str) -> list[dict]: | |
| content = [] | |
| frames = downsample_video(video_path) | |
| for frame in frames: | |
| pil_image, timestamp = frame | |
| with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file: | |
| pil_image.save(temp_file.name) | |
| content.append({"type": "text", "text": f"Frame {timestamp}:"}) | |
| content.append({"type": "image", "url": temp_file.name}) | |
| logger.debug(f"{content=}") | |
| return content | |
| def process_interleaved_images(message: dict) -> list[dict]: | |
| logger.debug(f"{message['files']=}") | |
| parts = re.split(r"(<image>)", message["text"]) | |
| logger.debug(f"{parts=}") | |
| content = [] | |
| image_index = 0 | |
| for part in parts: | |
| logger.debug(f"{part=}") | |
| if part == "<image>": | |
| content.append({"type": "image", "url": message["files"][image_index]}) | |
| logger.debug(f"file: {message['files'][image_index]}") | |
| image_index += 1 | |
| elif part.strip(): | |
| content.append({"type": "text", "text": part.strip()}) | |
| elif isinstance(part, str) and part != "<image>": | |
| content.append({"type": "text", "text": part}) | |
| logger.debug(f"{content=}") | |
| return content | |
| def process_new_user_message(message: dict) -> list[dict]: | |
| if not message["files"]: | |
| return [{"type": "text", "text": message["text"]}] | |
| if message["files"][0].endswith(".mp4"): | |
| return [{"type": "text", "text": message["text"]}, *process_video(message["files"][0])] | |
| if "<image>" in message["text"]: | |
| return process_interleaved_images(message) | |
| return [ | |
| {"type": "text", "text": message["text"]}, | |
| *[{"type": "image", "url": path} for path in message["files"]], | |
| ] | |
| def process_history(history: list[dict]) -> list[dict]: | |
| messages = [] | |
| current_user_content: list[dict] = [] | |
| for item in history: | |
| if item["role"] == "assistant": | |
| if current_user_content: | |
| messages.append({"role": "user", "content": current_user_content}) | |
| current_user_content = [] | |
| messages.append({"role": "assistant", "content": [{"type": "text", "text": item["content"]}]}) | |
| else: | |
| content = item["content"] | |
| if isinstance(content, str): | |
| current_user_content.append({"type": "text", "text": content}) | |
| else: | |
| current_user_content.append({"type": "image", "url": content[0]}) | |
| return messages | |
| def run(message: dict, history: list[dict], system_prompt: str = "", max_new_tokens: int = 2048) -> Iterator[str]: | |
| if not validate_media_constraints(message, history): | |
| yield "" | |
| return | |
| messages = [] | |
| if system_prompt: | |
| messages.append({"role": "system", "content": [{"type": "text", "text": system_prompt}]}) | |
| messages.extend(process_history(history)) | |
| messages.append({"role": "user", "content": process_new_user_message(message)}) | |
| inputs = processor.apply_chat_template( | |
| messages, | |
| add_generation_prompt=True, | |
| tokenize=True, | |
| return_dict=True, | |
| return_tensors="pt", | |
| ).to(device=model.device, dtype=torch.bfloat16) | |
| streamer = TextIteratorStreamer(processor, timeout=30.0, skip_prompt=True, skip_special_tokens=True) | |
| generate_kwargs = dict( | |
| inputs, | |
| max_new_tokens=max_new_tokens, | |
| streamer=streamer, | |
| temperature=1.0, | |
| top_p=0.95, | |
| top_k=64, | |
| min_p=0.0, | |
| ) | |
| t = Thread(target=model.generate, kwargs=generate_kwargs) | |
| t.start() | |
| output = "" | |
| for delta in streamer: | |
| output += delta | |
| yield output | |
| DESCRIPTION = """\ | |
| This is a demo of MedGemma, a Gemma 3 variant trained for performance on medical text and image comprehension. | |
| You can upload images, interleaved images and videos. Note that video input only supports single-turn conversation and mp4 input. | |
| """ | |
| demo = gr.ChatInterface( | |
| fn=run, | |
| type="messages", | |
| chatbot=gr.Chatbot(type="messages", scale=1, allow_tags=["image"]), | |
| textbox=gr.MultimodalTextbox(file_types=["image", ".mp4"], file_count="multiple", autofocus=True), | |
| multimodal=True, | |
| additional_inputs=[ | |
| gr.Textbox(label="System Prompt", value="You are a helpful medical expert."), | |
| gr.Slider(label="Max New Tokens", minimum=100, maximum=8192, step=10, value=2048), | |
| ], | |
| stop_btn=False, | |
| title="MedGemma 4B IT", | |
| description=DESCRIPTION, | |
| run_examples_on_click=False, | |
| cache_examples=False, | |
| css_paths="style.css", | |
| delete_cache=(1800, 1800), | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |