Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,6 +4,7 @@ import numpy as np
|
|
| 4 |
import re
|
| 5 |
import tempfile
|
| 6 |
from datetime import datetime
|
|
|
|
| 7 |
from langchain_community.document_loaders import PDFPlumberLoader
|
| 8 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 9 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
|
@@ -18,46 +19,8 @@ from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
|
| 18 |
from langchain.llms.huggingface_pipeline import HuggingFacePipeline
|
| 19 |
from huggingface_hub import login
|
| 20 |
|
| 21 |
-
#### Model Testing ###########
|
| 22 |
-
print(f"-- Model test started")
|
| 23 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 24 |
-
|
| 25 |
-
model_name = "Qwen/Qwen2.5-0.5B-Instruct"
|
| 26 |
-
|
| 27 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 28 |
-
model_name,
|
| 29 |
-
)
|
| 30 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 31 |
-
|
| 32 |
-
prompt = "Give me a short introduction to large language model."
|
| 33 |
-
messages = [
|
| 34 |
-
{"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
|
| 35 |
-
{"role": "user", "content": prompt}
|
| 36 |
-
]
|
| 37 |
-
text = tokenizer.apply_chat_template(
|
| 38 |
-
messages,
|
| 39 |
-
tokenize=False,
|
| 40 |
-
add_generation_prompt=True
|
| 41 |
-
)
|
| 42 |
-
print(f"-- Model Invoking")
|
| 43 |
-
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
| 44 |
-
|
| 45 |
-
generated_ids = model.generate(
|
| 46 |
-
**model_inputs,
|
| 47 |
-
max_new_tokens=512
|
| 48 |
-
)
|
| 49 |
-
generated_ids = [
|
| 50 |
-
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
| 51 |
-
]
|
| 52 |
-
|
| 53 |
-
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 54 |
-
print(f"-- Model testresponse{model_inputs}")
|
| 55 |
-
|
| 56 |
-
##########################
|
| 57 |
-
|
| 58 |
|
| 59 |
# Load the model and tokenizer
|
| 60 |
-
# model_name = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
|
| 61 |
model_name= "Qwen/Qwen2.5-0.5B-Instruct"
|
| 62 |
|
| 63 |
# Initialize classifier once for input guardrail
|
|
@@ -122,34 +85,16 @@ if uploaded_files:
|
|
| 122 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 123 |
model_name,
|
| 124 |
trust_remote_code=True,
|
| 125 |
-
padding_side="left" # Important for some models
|
| 126 |
)
|
| 127 |
model = AutoModelForCausalLM.from_pretrained(
|
| 128 |
model_name,
|
| 129 |
trust_remote_code=True,
|
| 130 |
)
|
| 131 |
-
|
| 132 |
-
# Create pipeline with generation parameters
|
| 133 |
-
pipeline_llm = pipeline(
|
| 134 |
-
"text-generation",
|
| 135 |
-
model=model,
|
| 136 |
-
tokenizer=tokenizer,
|
| 137 |
-
max_new_tokens=1024,
|
| 138 |
-
temperature=0.3,
|
| 139 |
-
top_p=0.95,
|
| 140 |
-
repetition_penalty=1.15,
|
| 141 |
-
return_full_text=False # Important for response formatting
|
| 142 |
-
)
|
| 143 |
-
|
| 144 |
-
llm = HuggingFacePipeline(pipeline=pipeline_llm)
|
| 145 |
-
|
| 146 |
-
llm_sample_resp = llm("Explain what is Retrieval Augmented Generation (RAG)?")
|
| 147 |
-
print(f"-- llmsampleresponse:{llm_sample_resp}")
|
| 148 |
-
|
| 149 |
|
| 150 |
# Update prompt template
|
| 151 |
PROMPT_TEMPLATE = """
|
| 152 |
-
<|
|
| 153 |
You are a senior financial analyst. Analyze these financial reports:
|
| 154 |
1. Compare key metrics between documents
|
| 155 |
2. Identify trends across reporting periods
|
|
@@ -168,7 +113,6 @@ if uploaded_files:
|
|
| 168 |
template=PROMPT_TEMPLATE,
|
| 169 |
input_variables=["context", "question"]
|
| 170 |
)
|
| 171 |
-
llm_chain = LLMChain(llm=llm, prompt=qa_prompt)
|
| 172 |
|
| 173 |
# Interactive Q&A Interface
|
| 174 |
st.header("π Cross-Document Financial Inquiry")
|
|
@@ -215,11 +159,35 @@ if uploaded_files:
|
|
| 215 |
# Response Generation
|
| 216 |
context = "\n".join([doc.page_content for doc in filtered_docs])
|
| 217 |
print(f"-- Retrieved context:{context}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 218 |
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
|
|
|
| 222 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 223 |
print(f"Analysis result:{analysis}")
|
| 224 |
|
| 225 |
# Response Cleaning
|
|
|
|
| 4 |
import re
|
| 5 |
import tempfile
|
| 6 |
from datetime import datetime
|
| 7 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 8 |
from langchain_community.document_loaders import PDFPlumberLoader
|
| 9 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 10 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
|
|
|
| 19 |
from langchain.llms.huggingface_pipeline import HuggingFacePipeline
|
| 20 |
from huggingface_hub import login
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
# Load the model and tokenizer
|
|
|
|
| 24 |
model_name= "Qwen/Qwen2.5-0.5B-Instruct"
|
| 25 |
|
| 26 |
# Initialize classifier once for input guardrail
|
|
|
|
| 85 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 86 |
model_name,
|
| 87 |
trust_remote_code=True,
|
|
|
|
| 88 |
)
|
| 89 |
model = AutoModelForCausalLM.from_pretrained(
|
| 90 |
model_name,
|
| 91 |
trust_remote_code=True,
|
| 92 |
)
|
| 93 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
|
| 95 |
# Update prompt template
|
| 96 |
PROMPT_TEMPLATE = """
|
| 97 |
+
<|User|>
|
| 98 |
You are a senior financial analyst. Analyze these financial reports:
|
| 99 |
1. Compare key metrics between documents
|
| 100 |
2. Identify trends across reporting periods
|
|
|
|
| 113 |
template=PROMPT_TEMPLATE,
|
| 114 |
input_variables=["context", "question"]
|
| 115 |
)
|
|
|
|
| 116 |
|
| 117 |
# Interactive Q&A Interface
|
| 118 |
st.header("π Cross-Document Financial Inquiry")
|
|
|
|
| 159 |
# Response Generation
|
| 160 |
context = "\n".join([doc.page_content for doc in filtered_docs])
|
| 161 |
print(f"-- Retrieved context:{context}")
|
| 162 |
+
|
| 163 |
+
# prompt
|
| 164 |
+
prompt = qa_prompt.format(context=context, question=user_input)
|
| 165 |
+
####
|
| 166 |
+
# Generation
|
| 167 |
+
messages = [
|
| 168 |
+
{"role": "system", "content": "You are Financial assistant."},
|
| 169 |
+
{"role": "user", "content": prompt}
|
| 170 |
+
]
|
| 171 |
+
text = tokenizer.apply_chat_template(
|
| 172 |
+
messages,
|
| 173 |
+
tokenize=False,
|
| 174 |
+
add_generation_prompt=True
|
| 175 |
+
)
|
| 176 |
+
|
| 177 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
| 178 |
|
| 179 |
+
print(f"-- Model Invoking")
|
| 180 |
+
generated_ids = model.generate(
|
| 181 |
+
**model_inputs,
|
| 182 |
+
max_new_tokens=512
|
| 183 |
)
|
| 184 |
+
generated_ids = [
|
| 185 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
| 186 |
+
]
|
| 187 |
+
|
| 188 |
+
analysis = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 189 |
+
|
| 190 |
+
###
|
| 191 |
print(f"Analysis result:{analysis}")
|
| 192 |
|
| 193 |
# Response Cleaning
|