File size: 9,927 Bytes
9a70891
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import time
import gradio as gr
from PIL import Image
import pandas as pd
from advanced_ocr import AdvancedLicensePlateOCR, get_available_models
import os
from typing import List, Dict, Tuple

class OCRModelComparison:
    def __init__(self):
        self.ocr_system = AdvancedLicensePlateOCR()
        self.results_cache = {}
        
    def benchmark_single_image(self, image: Image.Image, model_keys: List[str]) -> Dict:
        results = {
            "image_size": image.size,
            "models_tested": len(model_keys),
            "results": []
        }
        
        for model_key in model_keys:
            try:
                start_time = time.time()
                
                extraction_result = self.ocr_system.extract_text_with_model(
                    image, model_key, use_preprocessing=True
                )
                
                end_time = time.time()
                processing_time = end_time - start_time
                
                model_info = self.ocr_system.models[model_key]
                
                result_entry = {
                    "model_key": model_key,
                    "model_name": model_info["name"],
                    "model_type": model_info["type"],
                    "processing_time": round(processing_time, 3),
                    "success": "error" not in extraction_result,
                    "best_result": extraction_result.get("best_result", "Error"),
                    "confidence": extraction_result.get("confidence", 0.0),
                    "extractions_count": len(extraction_result.get("extractions", [])),
                    "status": "βœ… Success" if "error" not in extraction_result else f"❌ {extraction_result.get('error', 'Unknown error')}"
                }
                
                results["results"].append(result_entry)
                
            except Exception as e:
                result_entry = {
                    "model_key": model_key,
                    "model_name": self.ocr_system.models.get(model_key, {}).get("name", "Unknown"),
                    "model_type": self.ocr_system.models.get(model_key, {}).get("type", "Unknown"),
                    "processing_time": 0.0,
                    "success": False,
                    "best_result": f"Exception: {str(e)}",
                    "confidence": 0.0,
                    "extractions_count": 0,
                    "status": f"❌ Exception: {str(e)}"
                }
                results["results"].append(result_entry)
        
        return results
    
    def create_comparison_table(self, benchmark_results: Dict) -> pd.DataFrame:
        if not benchmark_results.get("results"):
            return pd.DataFrame()
        
        df_data = []
        for result in benchmark_results["results"]:
            df_data.append({
                "Model": result["model_name"],
                "Type": result["model_type"],
                "Status": result["status"],
                "Extracted Text": result["best_result"],
                "Confidence": f"{result['confidence']:.2f}",
                "Processing Time (s)": result["processing_time"],
                "Variants Processed": result["extractions_count"]
            })
        
        return pd.DataFrame(df_data)
    
    def get_best_model_recommendation(self, benchmark_results: Dict) -> str:
        if not benchmark_results.get("results"):
            return "No results available"
        
        successful_results = [r for r in benchmark_results["results"] if r["success"]]
        
        if not successful_results:
            return "❌ No models succeeded in text extraction"
        
        best_by_confidence = max(successful_results, key=lambda x: x["confidence"])
        fastest = min(successful_results, key=lambda x: x["processing_time"])
        
        recommendation = f"""
πŸ† **Best Results:**

**Highest Confidence:** {best_by_confidence['model_name']}
- Text: "{best_by_confidence['best_result']}"
- Confidence: {best_by_confidence['confidence']:.2f}
- Time: {best_by_confidence['processing_time']:.3f}s

**Fastest Processing:** {fastest['model_name']}
- Text: "{fastest['best_result']}"
- Time: {fastest['processing_time']:.3f}s
- Confidence: {fastest['confidence']:.2f}

**Recommendation:** 
{"Use " + best_by_confidence['model_name'] + " for best accuracy" if best_by_confidence != fastest else "Best overall: " + best_by_confidence['model_name']}
"""
        return recommendation

def compare_ocr_models(image, selected_models):
    if image is None:
        return "Please upload an image", pd.DataFrame(), "No comparison performed"
    
    if not selected_models:
        return "Please select at least one model", pd.DataFrame(), "No models selected"
    
    try:
        comparator = OCRModelComparison()
        
        if isinstance(image, str):
            image = Image.open(image)
        
        benchmark_results = comparator.benchmark_single_image(image, selected_models)
        comparison_table = comparator.create_comparison_table(benchmark_results)
        recommendation = comparator.get_best_model_recommendation(benchmark_results)
        
        status_msg = f"βœ… Comparison completed! Tested {len(selected_models)} models on image size {benchmark_results['image_size']}"
        
        return status_msg, comparison_table, recommendation
        
    except Exception as e:
        error_msg = f"❌ Error during comparison: {str(e)}"
        return error_msg, pd.DataFrame(), "Comparison failed"

def create_model_comparison_app():
    models = get_available_models()
    model_choices = [(info["name"], key) for key, info in models.items()]
    
    css = """
    .model-comparison {
        background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
        color: white;
        padding: 20px;
        border-radius: 10px;
        text-align: center;
    }
    .recommendation-box {
        background-color: #f8f9fa;
        border: 2px solid #28a745;
        border-radius: 8px;
        padding: 15px;
        margin: 10px 0;
    }
    """
    
    with gr.Blocks(css=css, title="OCR Model Comparison Tool") as demo:
        gr.HTML("""
        <div class="model-comparison">
            <h1>πŸ” License Plate OCR Model Comparison</h1>
            <p>Compare different OCR models on your license plate images</p>
        </div>
        """)
        
        with gr.Row():
            with gr.Column(scale=1):
                gr.Markdown("### Input")
                
                input_image = gr.Image(
                    type="filepath",
                    label="Upload License Plate Image",
                    sources=["upload", "webcam"]
                )
                
                model_selector = gr.CheckboxGroup(
                    choices=model_choices,
                    value=["trocr_license", "easyocr"],
                    label="Select Models to Compare",
                    info="Choose which models to test (recommended: start with 2-3 models)"
                )
                
                compare_btn = gr.Button("πŸš€ Compare Models", variant="primary", size="lg")
                
                gr.Markdown("### Available Models")
                model_info_text = ""
                for key, info in models.items():
                    model_info_text += f"**{info['name']}** ({info['type']})\n{info['description']}\n\n"
                
                gr.Markdown(model_info_text)
            
            with gr.Column(scale=2):
                gr.Markdown("### Comparison Results")
                
                status_output = gr.Textbox(
                    label="Status",
                    placeholder="Upload an image and select models to compare...",
                    interactive=False
                )
                
                comparison_table = gr.Dataframe(
                    label="Detailed Comparison",
                    headers=["Model", "Type", "Status", "Extracted Text", "Confidence", "Processing Time (s)", "Variants Processed"],
                    interactive=False
                )
                
                with gr.Group(elem_classes="recommendation-box"):
                    recommendation_output = gr.Markdown(
                        value="### 🎯 Recommendations will appear here after comparison",
                        label="Model Recommendation"
                    )
        
        gr.Markdown("### Quick Start Guide")
        gr.Markdown("""
        1. **Upload** a license plate image
        2. **Select** 2-3 models to compare (recommended combinations):
           - `TrOCR License Plates + EasyOCR` (accuracy vs speed)
           - `All TrOCR models` (compare TrOCR variants)
           - `DETR + YOLO + EasyOCR` (different approaches)
        3. **Click Compare** and wait for results
        4. **Review** the recommendation for your use case
        
        **Model Types:**
        - **Transformers**: Modern AI models (TrOCR) - high accuracy, slower
        - **Traditional**: Classic OCR (EasyOCR) - fast, reliable baseline
        - **Object Detection**: End-to-end systems (DETR, YOLO) - detect + recognize
        """)
        
        compare_btn.click(
            fn=compare_ocr_models,
            inputs=[input_image, model_selector],
            outputs=[status_output, comparison_table, recommendation_output]
        )
        
        gr.Examples(
            examples=[
                [["sample_1.jpg"], ["trocr_license", "easyocr"]],
                [["sample_2.jpg"], ["trocr_license", "trocr_base", "easyocr"]]
            ],
            inputs=[input_image, model_selector],
            outputs=[status_output, comparison_table, recommendation_output],
            fn=compare_ocr_models
        )
    
    return demo

if __name__ == "__main__":
    demo = create_model_comparison_app()
    demo.launch(debug=True, share=True)