File size: 10,210 Bytes
a516b42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
import gradio as gr
from detector import (
yolov8_detect,
download_sample_images,
get_ocr_status,
ADVANCED_OCR_AVAILABLE,
OCR_AVAILABLE
)
try:
from advanced_ocr import get_available_models
except ImportError:
def get_available_models():
return {}
class UIComponents:
def __init__(self):
download_sample_images()
self.ocr_status = get_ocr_status()
self.custom_css = """
.gradio-container {
max-width: 1200px !important;
margin: 0 auto;
}
.main-header {
text-align: center;
margin-bottom: 2rem;
padding: 1rem;
}
.main-title {
font-size: 2rem;
font-weight: 600;
color: #333;
margin: 0;
}
.subtitle {
color: #666;
font-size: 1rem;
margin: 0.5rem 0;
}
.status-info {
font-size: 0.9rem;
color: #888;
margin: 0.5rem 0;
}
.section-gap {
margin: 1.5rem 0;
}
"""
def toggle_sections(self, extract_text_checked, crop_checked):
show_gallery = bool(extract_text_checked and crop_checked)
show_ocr = bool(extract_text_checked)
return (
gr.update(visible=show_gallery),
gr.update(visible=show_ocr),
)
def get_ocr_status_text(self):
if ADVANCED_OCR_AVAILABLE:
return "Advanced OCR Available"
elif OCR_AVAILABLE:
return "Basic OCR Available"
else:
return "OCR Not Available"
def create_header(self):
return gr.HTML(f"""
<div class="main-header">
<h1 class="main-title">AI Helmet Detection System</h1>
<p class="subtitle">Motorcyclist safety monitoring with license plate recognition</p>
<p class="status-info">YOLOv11 • {self.get_ocr_status_text()} • Real-time Processing</p>
</div>
""")
def create_settings_panel(self):
components = {}
with gr.Column(scale=1):
gr.Markdown("### Settings")
components['input_image'] = gr.Image(
type="filepath",
label="Upload Image",
sources=["upload", "webcam"]
)
with gr.Row():
components['image_size'] = gr.Slider(
minimum=320, maximum=1280, value=640, step=32,
label="Image Size"
)
with gr.Row():
components['conf_threshold'] = gr.Slider(
minimum=0.0, maximum=1.0, value=0.4, step=0.05,
label="Confidence"
)
components['iou_threshold'] = gr.Slider(
minimum=0.0, maximum=1.0, value=0.5, step=0.05,
label="IoU Threshold"
)
components['show_stats'] = gr.Checkbox(
value=True,
label="Show Statistics"
)
components['crop_plates'] = gr.Checkbox(
value=True,
label="Extract License Plates"
)
if self.ocr_status["any_available"]:
components['extract_text'] = gr.Checkbox(
value=False,
label="Enable OCR"
)
components['ocr_on_no_helmet'] = gr.Checkbox(
value=True,
label="Auto-OCR for No Helmet"
)
if ADVANCED_OCR_AVAILABLE:
models = get_available_models()
model_choices = [("Auto (Recommended)", "auto"), ("Basic EasyOCR", "basic")]
for key, info in models.items():
model_choices.append((info['name'], key))
components['selected_ocr_model'] = gr.Dropdown(
choices=model_choices,
value="auto",
label="OCR Model"
)
else:
components['selected_ocr_model'] = gr.State("basic")
gr.Markdown("*Note: OCR processing may increase detection time.*")
else:
components['extract_text'] = gr.Checkbox(
value=False,
label="OCR Not Available",
interactive=False
)
components['ocr_on_no_helmet'] = gr.Checkbox(
value=False,
label="Auto-OCR (Not Available)",
interactive=False
)
components['selected_ocr_model'] = gr.State("basic")
with gr.Row():
components['submit_btn'] = gr.Button("Start Detection", variant="primary")
components['clear_btn'] = gr.Button("Clear")
return components
def create_results_panel(self):
components = {}
with gr.Column(scale=2):
gr.Markdown("### Results")
components['output_image'] = gr.Image(
type="pil",
label="Detection Results"
)
with gr.Row():
components['output_table'] = gr.Dataframe(
headers=["Object", "Confidence", "Position", "Dimensions"],
label="Detection Details",
interactive=False
)
components['output_stats'] = gr.Textbox(
label="Statistics",
interactive=False,
lines=6
)
components['license_gallery'] = gr.Gallery(
label="License Plates",
columns=3,
visible=False
)
components['ocr_group'] = gr.Group(visible=False)
with components['ocr_group']:
components['plate_text_output'] = gr.Textbox(
label="OCR Results",
lines=4,
interactive=False
)
components['download_file'] = gr.File(
label="Download Results (ZIP)",
interactive=False
)
return components
def create_examples_tab(self, input_image, output_components):
with gr.TabItem("Examples"):
gr.Markdown("### Sample Images")
gr.Markdown("Click any example to test the detection system:")
gr.Examples(
examples=[
["sample_1.jpg"],
["sample_2.jpg"],
["sample_3.jpg"],
["sample_4.jpg"],
["sample_6.jpg"],
["sample_7.jpg"],
["sample_8.jpg"],
],
inputs=input_image,
outputs=[
output_components['output_image'],
output_components['output_table'],
output_components['output_stats'],
output_components['license_gallery'],
output_components['download_file'],
output_components['plate_text_output'],
],
fn=lambda img: yolov8_detect(
img, 640, 0.4, 0.5, True, True, True, False
),
cache_examples=True
)
def create_info_tab(self):
with gr.TabItem("Info"):
gr.Markdown("### System Information")
gr.Markdown(f"""
**AI Model:** YOLOv11
**Classes:** Helmet, No Helmet, License Plate
**OCR Status:** {self.get_ocr_status_text()}
**Features:** Detection, extraction, text recognition
**Privacy:** All processing is local. No data stored.
**Usage:** For demonstration and research purposes only.
""")
def setup_event_handlers(self, settings_components, results_components):
settings_components['submit_btn'].click(
fn=yolov8_detect,
inputs=[
settings_components['input_image'],
settings_components['image_size'],
settings_components['conf_threshold'],
settings_components['iou_threshold'],
settings_components['show_stats'],
gr.State(True),
settings_components['crop_plates'],
settings_components['extract_text'],
settings_components['ocr_on_no_helmet'],
settings_components['selected_ocr_model'],
],
outputs=[
results_components['output_image'],
results_components['output_table'],
results_components['output_stats'],
results_components['license_gallery'],
results_components['download_file'],
results_components['plate_text_output'],
],
)
settings_components['clear_btn'].click(
fn=lambda: [None, None, None, None, None, None],
inputs=[],
outputs=[
settings_components['input_image'],
results_components['output_image'],
results_components['output_table'],
results_components['output_stats'],
results_components['license_gallery'],
results_components['download_file'],
results_components['plate_text_output'],
],
)
settings_components['extract_text'].change(
fn=self.toggle_sections,
inputs=[settings_components['extract_text'], settings_components['crop_plates']],
outputs=[results_components['license_gallery'], results_components['ocr_group']],
)
settings_components['crop_plates'].change(
fn=self.toggle_sections,
inputs=[settings_components['extract_text'], settings_components['crop_plates']],
outputs=[results_components['license_gallery'], results_components['ocr_group']],
) |