File size: 10,210 Bytes
a516b42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import gradio as gr
from detector import (
    yolov8_detect,
    download_sample_images,
    get_ocr_status,
    ADVANCED_OCR_AVAILABLE,
    OCR_AVAILABLE
)

try:
    from advanced_ocr import get_available_models
except ImportError:
    def get_available_models():
        return {}

class UIComponents:
    def __init__(self):
        download_sample_images()
        self.ocr_status = get_ocr_status()
        self.custom_css = """
.gradio-container {
    max-width: 1200px !important;
    margin: 0 auto;
}
.main-header {
    text-align: center;
    margin-bottom: 2rem;
    padding: 1rem;
}
.main-title {
    font-size: 2rem;
    font-weight: 600;
    color: #333;
    margin: 0;
}
.subtitle {
    color: #666;
    font-size: 1rem;
    margin: 0.5rem 0;
}
.status-info {
    font-size: 0.9rem;
    color: #888;
    margin: 0.5rem 0;
}
.section-gap {
    margin: 1.5rem 0;
}
"""

    def toggle_sections(self, extract_text_checked, crop_checked):
        show_gallery = bool(extract_text_checked and crop_checked)
        show_ocr = bool(extract_text_checked)
        return (
            gr.update(visible=show_gallery),
            gr.update(visible=show_ocr),
        )

    def get_ocr_status_text(self):
        if ADVANCED_OCR_AVAILABLE:
            return "Advanced OCR Available"
        elif OCR_AVAILABLE:
            return "Basic OCR Available"
        else:
            return "OCR Not Available"

    def create_header(self):
        return gr.HTML(f"""
            <div class="main-header">
                <h1 class="main-title">AI Helmet Detection System</h1>
                <p class="subtitle">Motorcyclist safety monitoring with license plate recognition</p>
                <p class="status-info">YOLOv11 • {self.get_ocr_status_text()} • Real-time Processing</p>
            </div>
        """)

    def create_settings_panel(self):
        components = {}
        
        with gr.Column(scale=1):
            gr.Markdown("### Settings")
            
            components['input_image'] = gr.Image(
                type="filepath", 
                label="Upload Image", 
                sources=["upload", "webcam"]
            )
            
            with gr.Row():
                components['image_size'] = gr.Slider(
                    minimum=320, maximum=1280, value=640, step=32,
                    label="Image Size"
                )
            
            with gr.Row():
                components['conf_threshold'] = gr.Slider(
                    minimum=0.0, maximum=1.0, value=0.4, step=0.05,
                    label="Confidence"
                )
                components['iou_threshold'] = gr.Slider(
                    minimum=0.0, maximum=1.0, value=0.5, step=0.05,
                    label="IoU Threshold"
                )
            
            components['show_stats'] = gr.Checkbox(
                value=True, 
                label="Show Statistics"
            )
            components['crop_plates'] = gr.Checkbox(
                value=True, 
                label="Extract License Plates"
            )
            
            if self.ocr_status["any_available"]:
                components['extract_text'] = gr.Checkbox(
                    value=False,
                    label="Enable OCR"
                )
                components['ocr_on_no_helmet'] = gr.Checkbox(
                    value=True,
                    label="Auto-OCR for No Helmet"
                )

                if ADVANCED_OCR_AVAILABLE:
                    models = get_available_models()
                    model_choices = [("Auto (Recommended)", "auto"), ("Basic EasyOCR", "basic")]
                    for key, info in models.items():
                        model_choices.append((info['name'], key))
                    components['selected_ocr_model'] = gr.Dropdown(
                        choices=model_choices,
                        value="auto",
                        label="OCR Model"
                    )
                else:
                    components['selected_ocr_model'] = gr.State("basic")

                gr.Markdown("*Note: OCR processing may increase detection time.*")
            else:
                components['extract_text'] = gr.Checkbox(
                    value=False,
                    label="OCR Not Available",
                    interactive=False
                )
                components['ocr_on_no_helmet'] = gr.Checkbox(
                    value=False,
                    label="Auto-OCR (Not Available)",
                    interactive=False
                )
                components['selected_ocr_model'] = gr.State("basic")
            
            with gr.Row():
                components['submit_btn'] = gr.Button("Start Detection", variant="primary")
                components['clear_btn'] = gr.Button("Clear")
        
        return components

    def create_results_panel(self):
        components = {}
        
        with gr.Column(scale=2):
            gr.Markdown("### Results")
            
            components['output_image'] = gr.Image(
                type="pil", 
                label="Detection Results"
            )
            
            with gr.Row():
                components['output_table'] = gr.Dataframe(
                    headers=["Object", "Confidence", "Position", "Dimensions"],
                    label="Detection Details",
                    interactive=False
                )
                components['output_stats'] = gr.Textbox(
                    label="Statistics",
                    interactive=False,
                    lines=6
                )

            components['license_gallery'] = gr.Gallery(
                label="License Plates",
                columns=3,
                visible=False
            )

            components['ocr_group'] = gr.Group(visible=False)
            with components['ocr_group']:
                components['plate_text_output'] = gr.Textbox(
                    label="OCR Results",
                    lines=4,
                    interactive=False
                )

            components['download_file'] = gr.File(
                label="Download Results (ZIP)",
                interactive=False
            )
        
        return components

    def create_examples_tab(self, input_image, output_components):
        with gr.TabItem("Examples"):
            gr.Markdown("### Sample Images")
            gr.Markdown("Click any example to test the detection system:")
            
            gr.Examples(
                examples=[
                    ["sample_1.jpg"], 
                    ["sample_2.jpg"], 
                    ["sample_3.jpg"], 
                    ["sample_4.jpg"], 
                    ["sample_6.jpg"],
                    ["sample_7.jpg"],
                    ["sample_8.jpg"],
                ],
                inputs=input_image,
                outputs=[
                    output_components['output_image'],
                    output_components['output_table'],
                    output_components['output_stats'],
                    output_components['license_gallery'],
                    output_components['download_file'],
                    output_components['plate_text_output'],
                ],
                fn=lambda img: yolov8_detect(
                    img, 640, 0.4, 0.5, True, True, True, False
                ),
                cache_examples=True
            )

    def create_info_tab(self):
        with gr.TabItem("Info"):
            gr.Markdown("### System Information")
            
            gr.Markdown(f"""
            **AI Model:** YOLOv11  
            **Classes:** Helmet, No Helmet, License Plate  
            **OCR Status:** {self.get_ocr_status_text()}  
            **Features:** Detection, extraction, text recognition  
            
            **Privacy:** All processing is local. No data stored.  
            **Usage:** For demonstration and research purposes only.
            """)

    def setup_event_handlers(self, settings_components, results_components):
        settings_components['submit_btn'].click(
            fn=yolov8_detect,
            inputs=[
                settings_components['input_image'],
                settings_components['image_size'],
                settings_components['conf_threshold'],
                settings_components['iou_threshold'],
                settings_components['show_stats'],
                gr.State(True),
                settings_components['crop_plates'],
                settings_components['extract_text'],
                settings_components['ocr_on_no_helmet'],
                settings_components['selected_ocr_model'],
            ],
            outputs=[
                results_components['output_image'],
                results_components['output_table'],
                results_components['output_stats'],
                results_components['license_gallery'],
                results_components['download_file'],
                results_components['plate_text_output'],
            ],
        )

        settings_components['clear_btn'].click(
            fn=lambda: [None, None, None, None, None, None],
            inputs=[],
            outputs=[
                settings_components['input_image'],
                results_components['output_image'],
                results_components['output_table'],
                results_components['output_stats'],
                results_components['license_gallery'],
                results_components['download_file'],
                results_components['plate_text_output'],
            ],
        )

        settings_components['extract_text'].change(
            fn=self.toggle_sections,
            inputs=[settings_components['extract_text'], settings_components['crop_plates']],
            outputs=[results_components['license_gallery'], results_components['ocr_group']],
        )
        
        settings_components['crop_plates'].change(
            fn=self.toggle_sections,
            inputs=[settings_components['extract_text'], settings_components['crop_plates']],
            outputs=[results_components['license_gallery'], results_components['ocr_group']],
        )