Spaces:
Sleeping
Sleeping
AbstractQbit
commited on
Commit
·
2058f83
1
Parent(s):
f28d6ee
Add regression trained electra
Browse files- app.py +15 -5
- requirements.txt +1 -0
app.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
from transformers import AutoTokenizer,
|
| 2 |
import torch
|
| 3 |
import gradio as gr
|
| 4 |
import pickle
|
|
@@ -9,7 +9,10 @@ sklearn_model = pickle.load(open('classic_pipeline.pickle', 'rb'))
|
|
| 9 |
|
| 10 |
model_name = "AbstractQbit/electra_large_imdb_htsplice"
|
| 11 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 12 |
-
model =
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
|
| 15 |
def tokenize_with_splicing(text):
|
|
@@ -21,20 +24,27 @@ def tokenize_with_splicing(text):
|
|
| 21 |
tokens['attention_mask'] = [1]*512
|
| 22 |
return tokens
|
| 23 |
|
| 24 |
-
def
|
| 25 |
stars = round(1 + prob*9)
|
| 26 |
return '★'*stars + '☆'*(10-stars)
|
| 27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
def run_models(review):
|
| 29 |
prob_sklearn = float(sklearn_model.predict_proba([review])[0][1])
|
| 30 |
label_sklearn = 'positive' if prob_sklearn > 0.5 else 'negative'
|
| 31 |
-
res = f"TF-IDF SVC thinks the review is {label_sklearn} ({100*prob_sklearn:.2f}% positive).\n{
|
| 32 |
|
| 33 |
input = tokenize_with_splicing(review).convert_to_tensors('pt', True)
|
| 34 |
output = torch.nn.functional.softmax(model(**input).logits, dim=1)
|
| 35 |
prob_electra = float(output[0][1])
|
| 36 |
label_electra = 'positive' if prob_electra > 0.5 else 'negative'
|
| 37 |
-
res += f"ELECTRA thinks the review is {label_electra} ({100*prob_electra:.2f}% positive).\n{
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
return res
|
| 40 |
|
|
|
|
| 1 |
+
from transformers import AutoTokenizer, ElectraForSequenceClassification
|
| 2 |
import torch
|
| 3 |
import gradio as gr
|
| 4 |
import pickle
|
|
|
|
| 9 |
|
| 10 |
model_name = "AbstractQbit/electra_large_imdb_htsplice"
|
| 11 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 12 |
+
model = ElectraForSequenceClassification.from_pretrained(model_name)
|
| 13 |
+
|
| 14 |
+
model_reg_name = "AbstractQbit/electra_large_imdb_regression_htsplice"
|
| 15 |
+
model_reg = ElectraForSequenceClassification.from_pretrained(model_reg_name)
|
| 16 |
|
| 17 |
|
| 18 |
def tokenize_with_splicing(text):
|
|
|
|
| 24 |
tokens['attention_mask'] = [1]*512
|
| 25 |
return tokens
|
| 26 |
|
| 27 |
+
def make_stars_from_confidence(prob):
|
| 28 |
stars = round(1 + prob*9)
|
| 29 |
return '★'*stars + '☆'*(10-stars)
|
| 30 |
|
| 31 |
+
def make_stars_from_rating(rating):
|
| 32 |
+
stars = round(float(torch.clamp(rating, 1, 10)))
|
| 33 |
+
return '★'*stars + '☆'*(10-stars)
|
| 34 |
+
|
| 35 |
def run_models(review):
|
| 36 |
prob_sklearn = float(sklearn_model.predict_proba([review])[0][1])
|
| 37 |
label_sklearn = 'positive' if prob_sklearn > 0.5 else 'negative'
|
| 38 |
+
res = f"TF-IDF SVC trained with polarity classification thinks the review is {label_sklearn} ({100*prob_sklearn:.2f}% positive confidence).\n{make_stars_from_confidence(prob_sklearn):s}\n\n"
|
| 39 |
|
| 40 |
input = tokenize_with_splicing(review).convert_to_tensors('pt', True)
|
| 41 |
output = torch.nn.functional.softmax(model(**input).logits, dim=1)
|
| 42 |
prob_electra = float(output[0][1])
|
| 43 |
label_electra = 'positive' if prob_electra > 0.5 else 'negative'
|
| 44 |
+
res += f"ELECTRA trained with polarity classification thinks the review is {label_electra} ({100*prob_electra:.2f}% positive confidence).\n{make_stars_from_confidence(prob_electra):s}\n\n"
|
| 45 |
+
|
| 46 |
+
rating_electra_reg = model_reg(**input).logits[0,0]
|
| 47 |
+
res += f"ELECTRA trained with rating regression thinks the review is rated {rating_electra_reg:.2f}★.\n{make_stars_from_rating(rating_electra_reg):s}"
|
| 48 |
|
| 49 |
return res
|
| 50 |
|
requirements.txt
CHANGED
|
@@ -2,3 +2,4 @@ scikit-learn
|
|
| 2 |
torch
|
| 3 |
transformers
|
| 4 |
tokenizers
|
|
|
|
|
|
| 2 |
torch
|
| 3 |
transformers
|
| 4 |
tokenizers
|
| 5 |
+
accelerate
|