File size: 4,745 Bytes
912162f
 
 
 
1014901
 
 
 
 
 
 
 
 
54cd9dd
 
 
 
 
 
 
 
 
 
c113217
 
1014901
c113217
1014901
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c113217
 
 
 
 
 
 
 
 
1014901
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c113217
1014901
 
 
 
 
 
 
 
 
 
 
 
 
 
c113217
1014901
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c113217
1014901
 
 
 
 
 
c113217
1014901
 
 
 
 
c113217
1014901
 
 
 
 
 
 
 
 
 
 
 
c113217
 
 
 
 
 
1014901
c113217
1014901
 
 
 
 
 
 
 
c113217
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import requests



import base64
import mimetypes
import os
from pathlib import Path
from typing import Any, Dict, List

import gradio as gr
from openai import OpenAI


headers = {"Authorization": f"Bearer {API_KEY}"}
payload = {"inputs": "Describe this image", "parameters": {}}
res = requests.post(BASE_URL, headers=headers, json=payload)
print(res.json())





# Modelo por defecto
DEFAULT_MODEL = "LLaVA-OneVision-1.5-8B-Instruct"

# Cliente OpenAI-compatible (usa el endpoint de Hugging Face o el tuyo)
_client = OpenAI(
    base_url=os.getenv("BASE_URL", ""),
    api_key=os.getenv("API_KEY", ""),
)


def _data_url(path: str) -> str:
    mime, _ = mimetypes.guess_type(path)
    mime = mime or "application/octet-stream"
    data = base64.b64encode(Path(path).read_bytes()).decode("utf-8")
    return f"data:{mime};base64,{data}"


def _image_content(path: str) -> Dict[str, Any]:
    return {"type": "image_url", "image_url": {"url": _data_url(path)}}


def _text_content(text: str) -> Dict[str, Any]:
    return {"type": "text", "text": text}


def _message(role: str, content: Any) -> Dict[str, Any]:
    return {"role": role, "content": content}


def _build_user_message(message: Dict[str, Any]) -> Dict[str, Any]:
    files = message.get("files") or []
    text = (message.get("text") or "").strip()

    # 🔹 Si no hay texto, añadimos un prompt nutricional por defecto
    if not text:
        text = (
            "Analiza la imagen del plato de comida y describe los alimentos que contiene. "
            "Indica una estimación de calorías, proteínas, carbohidratos y grasas. "
            "Responde en formato breve y estructurado."
        )

    content: List[Dict[str, Any]] = [_image_content(p) for p in files]
    if text:
        content.append(_text_content(text))
    return _message("user", content)


def _convert_history(history: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
    msgs: List[Dict[str, Any]] = []
    user_content: List[Dict[str, Any]] = []

    for turn in history or []:
        role, content = turn.get("role"), turn.get("content")
        if role == "user":
            if isinstance(content, str):
                user_content.append(_text_content(content))
            elif isinstance(content, tuple):
                user_content.extend(_image_content(path) for path in content if path)
        elif role == "assistant":
            msgs.append(_message("user", user_content.copy()))
            user_content.clear()
            msgs.append(_message("assistant", content))
    return msgs


def stream_response(message: Dict[str, Any], history: List[Dict[str, Any]], model_name: str = DEFAULT_MODEL):
    messages = _convert_history(history)
    messages.append(_build_user_message(message))
    try:
        stream = _client.chat.completions.create(
            model=model_name,
            messages=messages,
            temperature=0.1,
            top_p=1,
            extra_body={
                "repetition_penalty": 1.05,
                "frequency_penalty": 0,
                "presence_penalty": 0
            },
            stream=True
        )
        partial = ""
        for chunk in stream:
            delta = chunk.choices[0].delta.content
            if delta:
                partial += delta
                yield partial
    except Exception as e:
        yield f"⚠️ Error al obtener respuesta: {e}"


def build_demo() -> gr.Blocks:
    chatbot = gr.Chatbot(type="messages", allow_tags=["think"])
    textbox = gr.MultimodalTextbox(
        show_label=False,
        placeholder="Subí una foto de tu comida para analizarla...",
        file_types=["image"],
        file_count="single",
        max_plain_text_length=32768
    )
    model_selector = gr.Dropdown(
        label="Modelo",
        choices=[
            ("LLaVA-OneVision-1.5-8B-Instruct", "LLaVA-OneVision-1.5-8B-Instruct"),
            ("LLaVA-OneVision-1.5-4B-Instruct", "LLaVA-OneVision-1.5-4B-Instruct"),
        ],
        value=DEFAULT_MODEL,
    )
    return gr.ChatInterface(
        fn=stream_response,
        type="messages",
        multimodal=True,
        chatbot=chatbot,
        textbox=textbox,
        title="🍽️ NasFit Vision AI",
        description=(
            "Subí una foto de tu comida y NasFit IA estimará su contenido nutricional. "
            "Basado en **LLaVA-OneVision-1.5**, modelo multimodal open source con análisis visual avanzado. "
            "Ideal para tracking nutricional inteligente."
        ),
        additional_inputs=[model_selector],
        additional_inputs_accordion=gr.Accordion("Opciones avanzadas", open=False),
    ).queue(default_concurrency_limit=8)


def main():
    build_demo().launch()


if __name__ == "__main__":
    main()