Cal-AI / app.py
xiangan's picture
init
1014901
raw
history blame
4.27 kB
import base64
import mimetypes
import os
from pathlib import Path
from typing import Any, Dict, List
import gradio as gr
from openai import OpenAI
DEFAULT_MODEL = os.getenv("DEFAULT_MODEL", "LLaVA-OneVision-1.5-8B-Instruct")
_client = OpenAI(
base_url=os.getenv("BASE_URL", ""),
api_key=os.getenv("API_KEY", ""),
)
def _data_url(path: str) -> str:
mime, _ = mimetypes.guess_type(path)
mime = mime or "application/octet-stream"
data = base64.b64encode(Path(path).read_bytes()).decode("utf-8")
return f"data:{mime};base64,{data}"
def _image_content(path: str) -> Dict[str, Any]:
return {"type": "image_url", "image_url": {"url": _data_url(path)}}
def _text_content(text: str) -> Dict[str, Any]:
return {"type": "text", "text": text}
def _message(role: str, content: Any) -> Dict[str, Any]:
return {"role": role, "content": content}
def _build_user_message(message: Dict[str, Any]) -> Dict[str, Any]:
files = message.get("files") or []
text = (message.get("text") or "").strip()
content: List[Dict[str, Any]] = [_image_content(p) for p in files]
if text:
content.append(_text_content(text))
return _message("user", content)
def _convert_history(history: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
msgs: List[Dict[str, Any]] = []
user_content: List[Dict[str, Any]] = []
for turn in history or []:
role, content = turn.get("role"), turn.get("content")
if role == "user":
if isinstance(content, str):
user_content.append(_text_content(content))
elif isinstance(content, tuple):
user_content.extend(_image_content(path)
for path in content if path)
elif role == "assistant":
msgs.append(_message("user", user_content.copy()))
user_content.clear()
msgs.append(_message("assistant", content))
return msgs
def stream_response(message: Dict[str, Any], history: List[Dict[str, Any]], model_name: str = DEFAULT_MODEL):
messages = _convert_history(history)
messages.append(_build_user_message(message))
try:
stream = _client.chat.completions.create(
model=model_name,
messages=messages,
temperature=0.000001,
top_p=1,
extra_body={
"repetition_penalty": 1.05,
"frequency_penalty": 0,
"presence_penalty": 0
},
stream=True
)
partial = ""
for chunk in stream:
delta = chunk.choices[0].delta.content
if delta:
partial += delta
yield partial
except Exception as e:
yield f"Failed to get response: {e}"
def build_demo() -> gr.Blocks:
chatbot = gr.Chatbot(type="messages", allow_tags=["think"])
textbox = gr.MultimodalTextbox(
show_label=False,
placeholder="Enter text, or upload one or more images...",
file_types=["image"],
file_count="single",
max_plain_text_length=32768
)
model_selector = gr.Dropdown(
label="Model",
choices=[
("LLaVA-OneVision-1.5-8B-Instruct", "LLaVA-OneVision-1.5-8B-Instruct"),
("LLaVA-OneVision-1.5-4B-Instruct", "LLaVA-OneVision-1.5-4B-Instruct"),
],
value=DEFAULT_MODEL,
)
return gr.ChatInterface(
fn=stream_response,
type="messages",
multimodal=True,
chatbot=chatbot,
textbox=textbox,
title="LLaVA-OneVision-1.5: Fully Open Framework for Democratized Multimodal Training",
description="""**LLaVA-OneVision1.5** introduces a novel family of fully open-source Large Multimodal Models (LMMs) that achieves state-of-the-art performance with substantially lower cost through training on native resolution images.
🔗 **Links**: [GitHub](https://github.com/EvolvingLMMs-Lab/LLaVA-OneVision-1.5) | [HuggingFace](https://huggingface.co/lmms-lab)""",
additional_inputs=[model_selector],
additional_inputs_accordion=gr.Accordion("Options", open=True),
).queue(default_concurrency_limit=8)
def main():
build_demo().launch()
if __name__ == "__main__":
main()