Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from transformers import AutoModelForImageClassification, AutoImageProcessor
|
| 3 |
+
from PIL import Image
|
| 4 |
+
import torch
|
| 5 |
+
|
| 6 |
+
# Set the title of the application
|
| 7 |
+
st.title("Dermavision")
|
| 8 |
+
st.write(
|
| 9 |
+
"Upload an image of the affected skin area, and the app will classify the disease and provide analysis."
|
| 10 |
+
)
|
| 11 |
+
|
| 12 |
+
# Cache model and processor loading
|
| 13 |
+
@st.cache_resource
|
| 14 |
+
def load_model():
|
| 15 |
+
repo_name = "Jayanth2002/dinov2-base-finetuned-SkinDisease"
|
| 16 |
+
processor = AutoImageProcessor.from_pretrained(repo_name)
|
| 17 |
+
model = AutoModelForImageClassification.from_pretrained(repo_name)
|
| 18 |
+
return model, processor
|
| 19 |
+
|
| 20 |
+
model, processor = load_model()
|
| 21 |
+
|
| 22 |
+
# Define the class names
|
| 23 |
+
class_names = [
|
| 24 |
+
'Basal Cell Carcinoma', 'Darier_s Disease', 'Epidermolysis Bullosa Pruriginosa',
|
| 25 |
+
'Hailey-Hailey Disease', 'Herpes Simplex', 'Impetigo', 'Larva Migrans',
|
| 26 |
+
'Leprosy Borderline', 'Leprosy Lepromatous', 'Leprosy Tuberculoid', 'Lichen Planus',
|
| 27 |
+
'Lupus Erythematosus Chronicus Discoides', 'Melanoma', 'Molluscum Contagiosum',
|
| 28 |
+
'Mycosis Fungoides', 'Neurofibromatosis', 'Papilomatosis Confluentes And Reticulate',
|
| 29 |
+
'Pediculosis Capitis', 'Pityriasis Rosea', 'Porokeratosis Actinic', 'Psoriasis',
|
| 30 |
+
'Tinea Corporis', 'Tinea Nigra', 'Tungiasis', 'actinic keratosis', 'dermatofibroma',
|
| 31 |
+
'nevus', 'pigmented benign keratosis', 'seborrheic keratosis', 'squamous cell carcinoma',
|
| 32 |
+
'vascular lesion'
|
| 33 |
+
]
|
| 34 |
+
|
| 35 |
+
# Define reasons, treatments, and home remedies for each disease
|
| 36 |
+
# (This section is omitted for brevity but should remain unchanged from your original code)
|
| 37 |
+
|
| 38 |
+
# Function to classify the image
|
| 39 |
+
def classify_image(image):
|
| 40 |
+
inputs = processor(image.convert("RGB"), return_tensors="pt")
|
| 41 |
+
with torch.no_grad():
|
| 42 |
+
outputs = model(**inputs)
|
| 43 |
+
predicted_class_idx = outputs.logits.argmax(-1).item()
|
| 44 |
+
confidence_score = torch.nn.functional.softmax(outputs.logits, dim=-1).max().item()
|
| 45 |
+
predicted_label = class_names[predicted_class_idx]
|
| 46 |
+
return predicted_label, confidence_score
|
| 47 |
+
|
| 48 |
+
# File uploader for user image
|
| 49 |
+
uploaded_file = st.file_uploader("Upload a skin image", type=["jpg", "jpeg", "png"])
|
| 50 |
+
|
| 51 |
+
if uploaded_file is not None:
|
| 52 |
+
# Display the uploaded image
|
| 53 |
+
image = Image.open(uploaded_file)
|
| 54 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
| 55 |
+
|
| 56 |
+
# Analyze the image
|
| 57 |
+
with st.spinner("Analyzing the image..."):
|
| 58 |
+
predicted_label, confidence_score = classify_image(image)
|
| 59 |
+
if predicted_label not in disease_analysis:
|
| 60 |
+
st.error("Unable to classify the disease. Please upload a clearer image or consult a dermatologist.")
|
| 61 |
+
else:
|
| 62 |
+
reason = disease_analysis.get(predicted_label, {}).get("reason", "Reason unknown.")
|
| 63 |
+
treatment = disease_analysis.get(predicted_label, {}).get("treatment", "Consult a dermatologist.")
|
| 64 |
+
home_remedy = disease_analysis.get(predicted_label, {}).get("home_remedy", "No specific home remedies available.")
|
| 65 |
+
|
| 66 |
+
# Display the results
|
| 67 |
+
st.success("Analysis Complete!")
|
| 68 |
+
st.markdown(f"### **Classification**: {predicted_label}")
|
| 69 |
+
st.markdown(f"**Confidence**: {confidence_score:.2%}")
|
| 70 |
+
st.markdown(f"**Reason**: {reason}")
|
| 71 |
+
st.markdown(f"**Treatment**: {treatment}")
|
| 72 |
+
st.markdown(f"**Home Remedy**: {home_remedy}")
|
| 73 |
+
st.markdown("**Note:** Please consult a doctor for final recommendations and a detailed treatment plan.")
|
| 74 |
+
|
| 75 |
+
# Optional feedback form
|
| 76 |
+
st.markdown("---")
|
| 77 |
+
st.header("We Value Your Feedback!")
|
| 78 |
+
feedback = st.text_area("Please share your feedback to help us improve:")
|
| 79 |
+
if st.button("Submit Feedback"):
|
| 80 |
+
if feedback:
|
| 81 |
+
st.success("Thank you for your feedback!")
|
| 82 |
+
else:
|
| 83 |
+
st.warning("Feedback cannot be empty.")
|