Spaces:
Running
Running
File size: 9,701 Bytes
21fb9ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
import streamlit as st
from PIL import Image
import io
import os
import time
import tempfile
from pathlib import Path
from src.models.model_discovery import discover_models
from src.labels import LABELS
def load_model(model_info):
"""Load and cache the selected model with proper error handling."""
model_class = model_info["class"]
model_name = model_info["class_name"]
# Set up custom cache directory to avoid permission issues
custom_cache = Path(tempfile.gettempdir()) / "tikka_masalai_cache"
custom_cache.mkdir(exist_ok=True)
# Set HuggingFace cache directory (use HF_HOME instead of deprecated TRANSFORMERS_CACHE)
os.environ["HF_HOME"] = str(custom_cache)
os.environ["TRANSFORMERS_CACHE"] = str(
custom_cache
) # Keep for backward compatibility
try:
# Use a placeholder for the loading message that we can clear
loading_placeholder = st.empty()
loading_placeholder.info(f"Loading {model_name} model...")
# Try to load the model - handle different model initialization patterns
if "prithiv" in model_name.lower():
# PrithivML model with specific initialization
model = model_class()
elif "resnet" in model_name.lower():
# ResNet model - check if it needs specific paths
try:
model = model_class()
except TypeError:
# Try with default parameters if it requires them
model = model_class(
preprocessor_path="microsoft/resnet-18",
model_path="microsoft/resnet-18",
)
elif "vgg" in model_name.lower():
# VGG model with default parameters
model = model_class()
else:
# Generic model initialization
try:
model = model_class()
except TypeError:
# Skip models that require specific parameters we don't know about
raise RuntimeError(
f"Model {model_name} requires specific initialization parameters"
)
# Show success message briefly, then clear it
loading_placeholder.success(f"{model_name} model loaded successfully!")
time.sleep(1.5) # Show success message for 1.5 seconds
loading_placeholder.empty() # Clear the message
return model
except PermissionError as e:
st.error(f"β Permission error: {str(e)}")
if "cache" in str(e).lower():
st.info(
"π‘ This is likely a cache permission issue. Please refresh the page and try again."
)
return None
except Exception as e:
error_msg = str(e)
st.error(f"β Error loading {model_name} model: {error_msg}")
st.info("π‘ Possible solutions:")
st.info("1. Refresh the page and try again")
st.info("2. Check if HuggingFace services are available")
st.info("3. Try a different model")
return None
def predict_food(model, image_bytes):
"""Make a prediction on the uploaded image."""
try:
# Get prediction index
prediction_idx = model.classify(image_bytes)
# Get the label name
if 0 <= prediction_idx < len(LABELS):
prediction_label = LABELS[prediction_idx]
return prediction_idx, prediction_label
else:
return None, "Unknown"
except Exception as e:
st.error(f"Error during prediction: {str(e)}")
return None, "Error"
def main():
"""Main Streamlit application."""
st.set_page_config(
page_title="TikkaMasalAI Food Classifier", page_icon="π½οΈ", layout="centered"
)
st.title("π½οΈ TikkaMasalAI Food Classifier")
st.markdown("Upload an image of food and let our AI identify what it is!")
# Discover available models
try:
available_models = discover_models()
except Exception as e:
st.error(f"β Error discovering models: {str(e)}")
st.info("Make sure the src/models directory contains valid model files.")
return
if not available_models:
st.error("β No compatible models found in the src/models directory!")
st.info("Make sure there are models that inherit from FoodClassificationModel.")
return
# Model selection in sidebar
with st.sidebar:
st.header("π€ Model Selection")
selected_model_name = st.selectbox(
"Choose a model:",
options=list(available_models.keys()),
help="Select which AI model to use for food classification",
)
selected_model_info = available_models[selected_model_name]
# Show model information
st.info(f"**Selected:** {selected_model_name}")
st.write(f"**Class:** `{selected_model_info['class_name']}`")
st.write(f"**Module:** `{selected_model_info['module']}`")
# Show app status
status_container = st.container()
# Load model with better UX
with status_container:
model_status = st.empty()
progress_bar = st.progress(0)
model_status.info("π Initializing AI model...")
progress_bar.progress(25)
model = load_model(selected_model_info)
progress_bar.progress(100)
if model is None:
model_status.error("β Failed to load the model.")
st.error("### π¨ Model Loading Failed")
st.markdown(
f"""
**Failed to load:** {selected_model_name}
**Possible causes:**
- Model-specific initialization requirements
- Missing dependencies for this model
- Temporary HuggingFace services issue
- Model cache conflicts in HF Spaces
- Network connectivity problems
**Solutions:**
1. **Try a different model** from the sidebar
2. **Refresh the page** and try again
3. **Wait 2-3 minutes** for any background downloads to complete
4. If the issue persists, the model will automatically retry
"""
)
# Add a retry button
if st.button("π Retry Loading Model"):
st.experimental_rerun()
return
model_status.success(f"β
{selected_model_name} loaded and ready!")
progress_bar.empty()
# File uploader
uploaded_file = st.file_uploader(
"Choose a food image...",
type=["png", "jpg", "jpeg"],
help="Upload an image of food to classify",
)
if uploaded_file is not None:
# Read image bytes
image_bytes = uploaded_file.read()
# Display the uploaded image
col1, col2 = st.columns([1, 1])
with col1:
st.subheader("πΈ Uploaded Image")
image = Image.open(io.BytesIO(image_bytes))
st.image(image, caption="Your uploaded image", use_container_width=True)
with col2:
st.subheader("π Prediction Results")
# Make prediction
with st.spinner("Analyzing your image..."):
prediction_idx, prediction_label = predict_food(model, image_bytes)
if prediction_idx is not None:
# Display results
st.success("Classification complete!")
# Format the label for display
display_label = prediction_label.replace("_", " ").title()
st.markdown(f"### π·οΈ **{display_label}**")
st.markdown(f"**Class Index:** {prediction_idx}")
# Show confidence bar (placeholder since the model doesn't return probabilities)
st.markdown("**Prediction Details:**")
st.info(f"The AI model identified this image as **{display_label}**")
# Show additional info
with st.expander("βΉοΈ About this classification"):
st.write(f"- **Model:** {selected_model_name}")
st.write(f"- **Classes:** {len(LABELS)} different food types")
st.write(f"- **Raw label:** `{prediction_label}`")
st.write(f"- **Index:** {prediction_idx}")
else:
st.error("Failed to classify the image. Please try another image.")
# Sidebar with information
with st.sidebar:
st.header("π About")
st.write(
f"""
This app uses the **{selected_model_name}** model to classify food images into one of 101 different food categories.
"""
)
st.header("π― How to use")
st.write(
"""
1. Choose a model from the dropdown above
2. Upload an image of food using the file uploader
3. Wait for the AI to analyze your image
4. View the classification results
"""
)
st.header("π Supported Foods")
st.write(
f"The model can recognize **{len(LABELS)}** different types of food including:"
)
# Show a sample of labels
sample_labels = [label.replace("_", " ").title() for label in LABELS[:10]]
for label in sample_labels:
st.write(f"β’ {label}")
st.write(f"... and {len(LABELS) - 10} more!")
st.header("π§ Technical Details")
st.write(
f"""
- **Selected Model:** {selected_model_name}
- **Available Models:** {len(available_models)}
- **Dataset:** Food-101
- **Framework:** PyTorch + Transformers
"""
)
if __name__ == "__main__":
main()
|