File size: 36,635 Bytes
d12a6df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37003e0
 
 
 
 
 
 
 
d12a6df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37003e0
 
 
 
 
 
 
 
 
 
 
 
d12a6df
37003e0
d12a6df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37003e0
d12a6df
 
 
 
 
 
 
 
 
 
37003e0
 
 
 
 
 
 
 
 
d12a6df
 
37003e0
 
d12a6df
 
 
 
37003e0
d12a6df
37003e0
 
d12a6df
 
 
 
 
 
 
 
 
 
 
 
37003e0
d12a6df
 
 
37003e0
d12a6df
 
 
 
 
 
 
 
 
 
 
 
37003e0
 
 
 
 
 
 
d12a6df
 
37003e0
d12a6df
37003e0
d12a6df
 
 
 
 
 
 
 
 
 
37003e0
d12a6df
 
 
 
 
 
 
 
 
37003e0
 
 
 
 
 
 
d12a6df
 
 
 
37003e0
d12a6df
 
 
 
 
 
 
 
 
37003e0
 
 
 
 
 
 
 
d12a6df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8279524
d12a6df
b1257a1
 
 
 
d12a6df
23ae09e
37003e0
 
d12a6df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2c5439
 
 
d12a6df
 
 
b2c5439
 
 
 
 
 
 
d12a6df
b2c5439
 
 
 
 
d12a6df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
import os
import sys
import json
import argparse
import time
import uuid
import subprocess
import requests
from typing import List, Dict, Any, Iterator

from dotenv import load_dotenv
load_dotenv()

import gradio as gr
from gradio import ChatMessage

# Import AgentFlow modules
from agentflow.models.initializer import Initializer
from agentflow.models.planner import Planner
from agentflow.models.memory import Memory
from agentflow.models.executor import Executor
from agentflow.models.utils import make_json_serializable_truncated


from pathlib import Path
from huggingface_hub import CommitScheduler

# Get Huggingface token from environment variable
HF_TOKEN = os.getenv("HUGGINGFACE_TOKEN")

########### Test Huggingface Dataset ###########
# Update the HuggingFace dataset constants
DATASET_DIR = Path("solver_cache")  # the directory to save the dataset
DATASET_DIR.mkdir(parents=True, exist_ok=True)

global QUERY_ID
QUERY_ID = None

TOOL_NAME_MAPPING = {
    "Generalist_Solution_Generator_Tool": "Base_Generator_Tool",
    "Ground_Google_Search_Tool": "Google_Search_Tool",
    "Python_Code_Generator_Tool": "Python_Coder_Tool",
    "Web_RAG_Search_Tool": "Web_Search_Tool",
    "Wikipedia_RAG_Search_Tool": "Wikipedia_Search_Tool"
}

# Enable scheduler to record data to HuggingFace dataset
# scheduler = None
scheduler = CommitScheduler(
    repo_id="ZhuofengLi/AgentFlow-Gradio-Demo-User-Data",
    repo_type="dataset",
    folder_path=DATASET_DIR,
    path_in_repo="solver_cache",  # Update path in repo
    token=HF_TOKEN
)

########### vLLM Service Management ###########
VLLM_MODEL_NAME = "AgentFlow/agentflow-planner-7b"
VLLM_PORT = 8000
VLLM_HOST = "localhost"
VLLM_PROCESS = None

def check_vllm_service() -> bool:
    """Check if vLLM service is running"""
    try:
        response = requests.get(f"http://{VLLM_HOST}:{VLLM_PORT}/v1/models", timeout=2)
        return response.status_code == 200
    except:
        return False

def start_vllm_service() -> bool:
    """Start vLLM service in background"""
    global VLLM_PROCESS

    if check_vllm_service():
        print(f"🟒 vLLM service already running on port {VLLM_PORT}")
        return True

    try:
        print(f"πŸš€ Starting vLLM service for {VLLM_MODEL_NAME}...")

        # Start vLLM server in background
        VLLM_PROCESS = subprocess.Popen(
            [
                "vllm", "serve", VLLM_MODEL_NAME,
                "--port", str(VLLM_PORT),
                "--host", VLLM_HOST
            ],
            text=True
        )

        # Wait for service to be ready (max 60 seconds)
        for i in range(180):
            time.sleep(1)
            if check_vllm_service():
                print(f"🟒 vLLM service started successfully on port {VLLM_PORT}")
                return True

        print("⚠️ vLLM service failed to start within 60 seconds")
        return False

    except Exception as e:
        print(f"❌ Failed to start vLLM service: {e}")
        return False

def stop_vllm_service():
    """Stop vLLM service if running"""
    global VLLM_PROCESS
    if VLLM_PROCESS:
        VLLM_PROCESS.terminate()
        VLLM_PROCESS.wait()
        print("πŸ›‘ vLLM service stopped")

def get_vllm_status() -> str:
    """Get vLLM service status message"""
    if check_vllm_service():
        return f"🟒 vLLM service running on port {VLLM_PORT}"
    else:
        return f"⚠️ vLLM service not running"

########### End of vLLM Service Management ###########


def save_query_data(query_id: str, query: str) -> None:
    """Save query data to dataset"""
    # Save query metadata
    query_cache_dir = DATASET_DIR / query_id
    query_cache_dir.mkdir(parents=True, exist_ok=True)
    query_file = query_cache_dir / "query_metadata.json"

    query_metadata = {
        "query_id": query_id,
        "query_text": query,
        "datetime": time.strftime("%Y%m%d_%H%M%S"),
    }

    print(f"Saving query metadata to {query_file}")
    with query_file.open("w") as f:
        json.dump(query_metadata, f, indent=4)


def save_feedback(query_id: str, feedback_type: str, feedback_text: str = None) -> None:
    """
    Save user feedback to the query directory.
    
    Args:
        query_id: Unique identifier for the query
        feedback_type: Type of feedback ('upvote', 'downvote', or 'comment')
        feedback_text: Optional text feedback from user
    """

    feedback_data_dir = DATASET_DIR / query_id
    feedback_data_dir.mkdir(parents=True, exist_ok=True)
    
    feedback_data = {
        "query_id": query_id,
        "feedback_type": feedback_type,
        "feedback_text": feedback_text,
        "datetime": time.strftime("%Y%m%d_%H%M%S")
    }
    
    # Save feedback in the query directory
    feedback_file = feedback_data_dir / "feedback.json"
    print(f"Saving feedback to {feedback_file}")
    
    # If feedback file exists, update it
    if feedback_file.exists():
        with feedback_file.open("r") as f:
            existing_feedback = json.load(f)
            # Convert to list if it's a single feedback entry
            if not isinstance(existing_feedback, list):
                existing_feedback = [existing_feedback]
            existing_feedback.append(feedback_data)
            feedback_data = existing_feedback
    
    # Write feedback data
    with feedback_file.open("w") as f:
        json.dump(feedback_data, f, indent=4)


def save_steps_data(query_id: str, memory: Memory) -> None:
    """Save steps data to Huggingface dataset"""
    steps_file = DATASET_DIR / query_id / "all_steps.json"

    memory_actions = memory.get_actions()
    memory_actions = make_json_serializable_truncated(memory_actions) # NOTE: make the memory actions serializable
    print("Memory actions: ", memory_actions)

    with steps_file.open("w") as f:
        json.dump(memory_actions, f, indent=4)

    
def save_module_data(query_id: str, key: str, value: Any) -> None:
    """Save module data to Huggingface dataset"""
    try:
        key = key.replace(" ", "_").lower()
        module_file = DATASET_DIR / query_id / f"{key}.json"
        value = make_json_serializable_truncated(value)  # NOTE: make the value serializable
        with module_file.open("a") as f:
            json.dump(value, f, indent=4)
    except Exception as e:
        print(f"Warning: Failed to save as JSON: {e}")
        # Fallback to saving as text file
        text_file = DATASET_DIR / query_id / f"{key}.txt"
        try:
            with text_file.open("a") as f:
                f.write(str(value) + "\n")
            print(f"Successfully saved as text file: {text_file}")
        except Exception as e:
            print(f"Error: Failed to save as text file: {e}")

########### End of Test Huggingface Dataset ###########

class Solver:
    def __init__(
        self,
        planner,
        memory,
        executor,
        output_types: str = "base,final,direct",
        index: int = 0,
        verbose: bool = True,
        max_steps: int = 10,
        max_time: int = 60,
        query_cache_dir: str = "solver_cache"
    ):
        self.planner = planner
        self.memory = memory
        self.executor = executor
        self.index = index
        self.verbose = verbose
        self.max_steps = max_steps
        self.max_time = max_time
        self.query_cache_dir = query_cache_dir

        self.output_types = output_types.lower().split(',')
        assert all(output_type in ["base", "final", "direct"] for output_type in self.output_types), "Invalid output type. Supported types are 'base', 'final', 'direct'."


    def stream_solve_user_problem(self, user_query: str, messages: List[ChatMessage]) -> Iterator[List[ChatMessage]]:
        """
        Streams intermediate thoughts and final responses for the problem-solving process based on user input.

        Args:
            user_query (str): The text query input from the user.
            messages (list): A list of ChatMessage objects to store the streamed responses.
        """

        img_path = None  # AgentFlow doesn't use images in this demo

        # Set tool cache directory
        _tool_cache_dir = os.path.join(self.query_cache_dir, "tool_cache") # NOTE: This is the directory for tool cache
        self.executor.set_query_cache_dir(_tool_cache_dir) # NOTE: set query cache directory
        
        # Step 1: Display the received inputs
        messages.append(ChatMessage(role="assistant", content=f"### πŸ’­ Received Query:\n{user_query}"))
        yield messages

        # # Step 2: Add "thinking" status while processing
        # messages.append(ChatMessage(
        #     role="assistant",
        #     content="",
        #     metadata={"title": "⏳ Thinking: Processing input..."}
        # ))

        # [Step 3] Initialize problem-solving state
        start_time = time.time()
        step_count = 0
        json_data = {"query": user_query, "image": "Image received as bytes"}

        messages.append(ChatMessage(role="assistant", content="<br>"))
        messages.append(ChatMessage(role="assistant", content="### 🧠 Reasoning Steps from AgentFlow (Deep Reasoning...)"))
        yield messages

        # [Step 4] Query Analysis
        query_analysis = self.planner.analyze_query(user_query, img_path)
        json_data["query_analysis"] = query_analysis # TODO: update

        # Format the query analysis for display
        query_analysis_display = query_analysis.replace("Concise Summary:", "**Concise Summary:**\n")
        query_analysis_display = query_analysis_display.replace("Required Skills:", "**Required Skills:**")
        query_analysis_display = query_analysis_display.replace("Relevant Tools:", "**Relevant Tools:**")
        query_analysis_display = query_analysis_display.replace("Additional Considerations:", "**Additional Considerations:**")

        # Map tool names in query analysis for display
        for original_name, display_name in TOOL_NAME_MAPPING.items():
            query_analysis_display = query_analysis_display.replace(original_name, display_name)

        messages.append(ChatMessage(role="assistant",
                                    content=f"{query_analysis_display}",
                                    metadata={"title": "### πŸ”Ž Step 0: Query Analysis"}))
        yield messages

        # Save the query analysis data
        query_analysis_data = {
            "query_analysis": query_analysis,
            "time": round(time.time() - start_time, 5)
        }
        save_module_data(QUERY_ID, "step_0_query_analysis", query_analysis_data)



        # Execution loop (similar to your step-by-step solver)
        while step_count < self.max_steps and (time.time() - start_time) < self.max_time:
            step_count += 1
            messages.append(ChatMessage(role="AgentFlow",
                                        content=f"Generating the {step_count}-th step...",
                                        metadata={"title": f"πŸ”„ Step {step_count}"}))
            yield messages

            # [Step 5] Generate the next step
            next_step = self.planner.generate_next_step(
                user_query, img_path, query_analysis, self.memory, step_count, self.max_steps, json_data
            )
            context, sub_goal, tool_name = self.planner.extract_context_subgoal_and_tool(next_step) # TODO: update
            step_data = {
                "step_count": step_count,
                "context": context,
                "sub_goal": sub_goal,
                "tool_name": tool_name,
                "time": round(time.time() - start_time, 5)
            }
            save_module_data(QUERY_ID, f"step_{step_count}_action_prediction", step_data)

            # Display the step information
            display_tool_name = TOOL_NAME_MAPPING.get(tool_name, tool_name)

            # Map tool names in context and sub_goal for display
            context_display = context if context else ""
            sub_goal_display = sub_goal if sub_goal else ""
            for original_name, display_name in TOOL_NAME_MAPPING.items():
                context_display = context_display.replace(original_name, display_name)
                sub_goal_display = sub_goal_display.replace(original_name, display_name)

            messages.append(ChatMessage(
                role="assistant",
                content=f"**Context:** {context_display}\n\n**Sub-goal:** {sub_goal_display}\n\n**Tool:** `{display_tool_name}`",
                metadata={"title": f"### 🎯 Step {step_count}: Action Prediction ({display_tool_name})"}))
            yield messages

            # Handle tool execution or errors
            if tool_name not in self.planner.available_tools:
                display_tool_name = TOOL_NAME_MAPPING.get(tool_name, tool_name)
                messages.append(ChatMessage(
                    role="assistant",
                    content=f"⚠️ Error: Tool '{display_tool_name}' is not available."))
                yield messages
                continue

            # [Step 6-7] Generate and execute the tool command
            tool_command = self.executor.generate_tool_command(
                user_query, img_path, context, sub_goal, tool_name, self.planner.toolbox_metadata[tool_name], step_count, json_data
            )
            analysis, explanation, command = self.executor.extract_explanation_and_command(tool_command)
            result = self.executor.execute_tool_command(tool_name, command)
            result = make_json_serializable_truncated(result)

            # Display the ommand generation information
            display_tool_name = TOOL_NAME_MAPPING.get(tool_name, tool_name)
            messages.append(ChatMessage(
                role="assistant",
                content=f"**Command:**\n```python\n{command}\n```",
                metadata={"title": f"### πŸ“‹ Step {step_count}: Command Generation ({display_tool_name})"}))
            yield messages

            # Save the command generation data
            command_generation_data = {
                "analysis": analysis,
                "explanation": explanation,
                "command": command,
                "time": round(time.time() - start_time, 5)
            }
            save_module_data(QUERY_ID, f"step_{step_count}_command_generation", command_generation_data)
            
            # Display the command execution result
            display_tool_name = TOOL_NAME_MAPPING.get(tool_name, tool_name)

            # Map tool names in result for display
            result_json_str = json.dumps(result, indent=4)
            for original_name, display_name in TOOL_NAME_MAPPING.items():
                result_json_str = result_json_str.replace(original_name, display_name)

            messages.append(ChatMessage(
                role="assistant",
                content=f"**Result:**\n```json\n{result_json_str}\n```",
                # content=f"**Result:**\n```json\n{result}\n```",
                metadata={"title": f"### ⚑ Step {step_count}: Command Execution ({display_tool_name})"}))
            yield messages

            # Save the command execution data
            command_execution_data = {
                "result": result,
                "time": round(time.time() - start_time, 5)
            }
            save_module_data(QUERY_ID, f"step_{step_count}_command_execution", command_execution_data)

            # [Step 8] Memory update and stopping condition
            self.memory.add_action(step_count, tool_name, sub_goal, command, result) # TODO: do not update here
            stop_verification = self.planner.verificate_context(user_query, img_path, query_analysis, self.memory, step_count, json_data)
            context_verification, conclusion = self.planner.extract_conclusion(stop_verification)

            # Save the context verification data
            context_verification_data = {
                "stop_verification": context_verification,
                "conclusion": conclusion,
                "time": round(time.time() - start_time, 5)
            }
            save_module_data(QUERY_ID, f"step_{step_count}_context_verification", context_verification_data)

            # Display the context verification result # TODO: update context_verification
            # Map tool names in context verification for display
            context_verification_display = context_verification if context_verification else ""
            for original_name, display_name in TOOL_NAME_MAPPING.items():
                context_verification_display = context_verification_display.replace(original_name, display_name)

            conclusion_emoji = "βœ…" if conclusion == 'STOP' else "πŸ›‘"
            messages.append(ChatMessage(
                role="assistant",
                content=f"**Analysis:**\n{context_verification_display}\n\n**Conclusion:** `{conclusion}` {conclusion_emoji}",
                metadata={"title": f"### πŸ€– Step {step_count}: Context Verification"}))
            yield messages

            if conclusion == 'STOP':
                break

        # Step 7: Generate Final Output (if needed)
        if 'direct' in self.output_types:
            messages.append(ChatMessage(role="assistant", content="<br>"))
            direct_output = self.planner.generate_direct_output(user_query, img_path, self.memory) # TODO: update

            # Map tool names in direct output for display
            direct_output_display = direct_output if direct_output else ""
            for original_name, display_name in TOOL_NAME_MAPPING.items():
                direct_output_display = direct_output_display.replace(original_name, display_name)

            messages.append(ChatMessage(role="assistant", content=f"### πŸŽ‰ Final Answer:\n{direct_output_display}"))
            yield messages

            # Save the direct output data
            direct_output_data = {
                "direct_output": direct_output,
                "time": round(time.time() - start_time, 5)
            }
            save_module_data(QUERY_ID, "direct_output", direct_output_data)


        if 'final' in self.output_types:
            final_output = self.planner.generate_final_output(user_query, img_path, self.memory) # Disabled visibility for now
            # messages.append(ChatMessage(role="assistant", content=f"🎯 Final Output:\n{final_output}"))
            # yield messages

            # Save the final output data
            final_output_data = {
                "final_output": final_output,
                "time": round(time.time() - start_time, 5)
            }
            save_module_data(QUERY_ID, "final_output", final_output_data)

        # Step 8: Completion Message
        messages.append(ChatMessage(role="assistant", content="<br>"))
        messages.append(ChatMessage(role="assistant", content="### ✨ Query Solved!"))
        messages.append(ChatMessage(role="assistant", content="How do you like the output from AgentFlow πŸŒ€πŸ’«? Please give us your feedback below. \n\nπŸ‘ If the answer is correct or the reasoning steps are helpful, please upvote the output. \nπŸ‘Ž If it is incorrect or the reasoning steps are not helpful, please downvote the output. \nπŸ’¬ If you have any suggestions or comments, please leave them below.\n\nThank you for using AgentFlow! πŸŒ€πŸ’«"))
        yield messages
        

def parse_arguments():
    parser = argparse.ArgumentParser(description="Run the AgentFlow demo with specified parameters.")
    parser.add_argument("--llm_engine_name", default="gpt-4o", help="LLM engine name.")
    parser.add_argument("--max_tokens", type=int, default=2000, help="Maximum tokens for LLM generation.")
    parser.add_argument(
        "--output_types",
        default="base,final,direct",
        help="Comma-separated list of required outputs (base,final,direct)"
    )
    parser.add_argument("--enabled_tools", default="Base_Generator_Tool", help="List of enabled tools.")
    parser.add_argument("--root_cache_dir", default="solver_cache", help="Path to solver cache directory.")
    parser.add_argument("--query_id", default=None, help="Query ID.")
    parser.add_argument("--verbose", type=bool, default=True, help="Enable verbose output.")

    # NOTE: Add new arguments
    parser.add_argument("--run_baseline_only", type=bool, default=False, help="Run only the baseline (no toolbox).")
    parser.add_argument("--openai_api_source", default="we_provided", choices=["we_provided", "user_provided"], help="Source of OpenAI API key.")
    return parser.parse_args()


def solve_problem_gradio(user_query, max_steps=10, max_time=60, llm_model_engine=None, enabled_tools=None):
    """
    Wrapper function to connect the solver to Gradio.
    Streams responses from `solver.stream_solve_user_problem` for real-time UI updates.
    """

    # Check if query is empty
    if not user_query or not user_query.strip():
        yield [ChatMessage(role="assistant", content="❌ Error: Please enter a question before submitting.")]
        return

    # Generate Unique Query ID (Date and first 8 characters of UUID)
    query_id = time.strftime("%Y%m%d_%H%M%S") + "_" + str(uuid.uuid4())[:8] # e.g, 20250217_062225_612f2474
    print(f"Query ID: {query_id}")

    # NOTE: update the global variable to save the query ID
    global QUERY_ID
    QUERY_ID = query_id

    # Create a directory for the query ID
    query_cache_dir = os.path.join(DATASET_DIR.name, query_id) # NOTE
    os.makedirs(query_cache_dir, exist_ok=True)

    # if api_key is None:
    #     return [["assistant", "❌ Error: OpenAI API Key is required."]]
    
    # Save the query data
    save_query_data(
        query_id=query_id,
        query=user_query
    )

    # Filter out Web_Search_Tool (frontend only, not actually used)
    if enabled_tools and "Web_Search_Tool" in enabled_tools:
        enabled_tools = [tool for tool in enabled_tools if tool != "Web_Search_Tool"]

    # Instantiate Initializer
    initializer = Initializer(
        enabled_tools=enabled_tools,
        tool_engine=["Default"] * len(enabled_tools) if enabled_tools else ["Default"],
        model_string=llm_model_engine,
        verbose=False
    )

    # Instantiate Planner
    planner = Planner(
        llm_engine_name=llm_model_engine,
        toolbox_metadata=initializer.toolbox_metadata,
        available_tools=initializer.available_tools,
        verbose=False,
        temperature=0.7
    )

    # Instantiate Memory
    memory = Memory()

    # Instantiate Executor
    executor = Executor(
        llm_engine_name="dashscope",  # AgentFlow uses dashscope for executor
        root_cache_dir=query_cache_dir, # NOTE
        verbose=False,
        temperature=0.7,
        enable_signal=False
    )

    # Instantiate Solver
    solver = Solver(
        planner=planner,
        memory=memory,
        executor=executor,
        output_types=args.output_types,  # Add new parameter
        verbose=args.verbose,
        max_steps=max_steps,
        max_time=max_time,
        query_cache_dir=query_cache_dir # NOTE
    )

    if solver is None:
        return [["assistant", "❌ Error: Solver is not initialized. Please restart the application."]]


    messages = []  # Initialize message list
    for message_batch in solver.stream_solve_user_problem(user_query, messages):
        yield [msg for msg in message_batch]  # Ensure correct format for Gradio Chatbot

    # Save steps
    save_steps_data(
        query_id=query_id,
        memory=memory
    )


def main(args):
    #################### Gradio Interface ####################
    # with gr.Blocks() as demo:
    with gr.Blocks(theme=gr.themes.Ocean()) as demo:
        # Theming https://www.gradio.app/guides/theming-guide

        gr.Markdown("# πŸŒ€πŸ’« Chat with AgentFlow: A Trainable Agentic Framework for Complex Reasoning")  # Title
        gr.Markdown("""
        **AgentFlow** is a **trainable, tool-integrated agentic framework** designed to overcome the scalability and generalization limits of today's tool-augmented reasoning approaches. It introduces a **modular agentic system** (🧭 Planner, πŸ›  Executor, βœ… Verifier, and ✍️ Generator) and an **in-the-flow RL algorithm (Flow-GRPO)** to optimize the agent within the system for **effective planning and tool use**.

        [Website](https://agentflow.stanford.edu/) |
        [HF Paper](https://huggingface.co/papers/2510.05592) |
        [GitHub](https://github.com/lupantech/AgentFlow) |
        [Model](https://huggingface.co/AgentFlow/agentflow-planner-7b) |
        [YouTube](https://www.youtube.com/watch?v=kIQbCQIH1SI) |
        [X (Twitter)](https://x.com/lupantech/status/1976016000345919803) |
        [Slack](https://join.slack.com/t/agentflow-co/shared_invite/zt-3f712xngl-LfxS4gmftAeKvcxR3nSkWQ)

        > ⏳ **Note:** The first query may take ~20 seconds to initialize AgentFlow. Subsequent queries will be super fast.
        >
        > πŸ’‘ **Tip:** If the wait time is too long, please try again later.
        """)

        with gr.Row():
            # Left column for settings
            with gr.Column(scale=1):
                # with gr.Row():
                #     if args.openai_api_source == "user_provided":
                #         print("Using API key from user input.")
                #         api_key = gr.Textbox(
                #             show_label=True,
                #             placeholder="Your API key will not be stored in any way.",
                #             type="password", 
                #             label="OpenAI API Key",
                #             # container=False
                #         )
                #     else:
                #         print(f"Using local API key from environment variable: ...{os.getenv('OPENAI_API_KEY')[-4:]}")
                #         api_key = gr.Textbox(
                #             value=os.getenv("OPENAI_API_KEY"),
                #             visible=True,
                #             interactive=False
                #         )


                with gr.Row():
                    llm_model_engine = gr.Textbox(
                        value="vllm-AgentFlow/agentflow-planner-7b",
                        label="🧭 Planner Model",
                        interactive=False
                    )
                
                with gr.Row():
                    gr.Textbox(
                        value="Qwen2.5-7B-Instruct",
                        label="πŸ›  Executor, βœ… Verifier, and ✍️ Generator Model",
                        interactive=False
                    )
                    

                with gr.Row():
                    vllm_status = gr.Textbox(
                        value=get_vllm_status(),
                        label="vLLM Status",
                        interactive=False,
                        scale=4
                    )
                    refresh_status_btn = gr.Button("πŸ”„ Refresh", scale=1)

                    # Add click handler for refresh button
                    refresh_status_btn.click(
                        fn=get_vllm_status,
                        inputs=[],
                        outputs=vllm_status
                    )

                with gr.Row():
                    max_steps = gr.Slider(value=5, minimum=1, maximum=10, step=1, label="Max Steps")
                
                with gr.Row():
                    max_time = gr.Slider(value=240, minimum=60, maximum=300, step=30, label="Max Time (seconds)")

                with gr.Row():
                    # Container for tools section
                    with gr.Column():

                        # First row for checkbox group
                        enabled_tools = gr.CheckboxGroup(
                            choices=all_tools,
                            value=all_tools,
                            label="Selected Tools",
                        )

                        # Second row for buttons
                        with gr.Row():
                            enable_all_btn = gr.Button("Select All Tools")
                            disable_all_btn = gr.Button("Clear All Tools")
                        
                        # Add click handlers for the buttons
                        enable_all_btn.click(
                            lambda: all_tools,
                            outputs=enabled_tools
                        )
                        disable_all_btn.click(
                            lambda: [],
                            outputs=enabled_tools
                        )

            with gr.Column(scale=5):
                
                with gr.Row():
                    # Middle column for the query
                    with gr.Column(scale=2):
                        with gr.Row():
                            user_query = gr.Textbox(value="How many r letters are in the word strawberry?", placeholder="Type your question here...", label="Question (Required)", lines=3)

                        with gr.Row():
                            run_button = gr.Button("πŸŒ€πŸ’« Submit and Run", variant="primary")  # Run button with blue color

                    # Right column for the output
                    with gr.Column(scale=3):
                        chatbot_output = gr.Chatbot(type="messages", label="Step-wise Problem-Solving Output", height=500)

                        # TODO: Add actions to the buttons
                        with gr.Row(elem_id="buttons") as button_row:
                            upvote_btn = gr.Button(value="πŸ‘  Upvote", interactive=True, variant="primary")
                            downvote_btn = gr.Button(value="πŸ‘Ž  Downvote", interactive=True, variant="primary")
                            # stop_btn = gr.Button(value="⛔️  Stop", interactive=True) # TODO
                            # clear_btn = gr.Button(value="πŸ—‘οΈ  Clear history", interactive=True) # TODO

                        # TODO: Add comment textbox
                        with gr.Row():
                            comment_textbox = gr.Textbox(value="",
                                                        placeholder="Feel free to add any comments here. Thanks for using AgentFlow!",
                                                        label="πŸ’¬ Comment (Type and press Enter to submit.)", interactive=True)

                        # Update the button click handlers
                        upvote_btn.click(
                            fn=lambda: (save_feedback(QUERY_ID, "upvote"), gr.Info("Thank you for your upvote! πŸ™Œ")),
                            inputs=[],
                            outputs=[]
                        )

                        downvote_btn.click(
                            fn=lambda: (save_feedback(QUERY_ID, "downvote"), gr.Info("Thank you for your feedback. We'll work to improve! πŸ™")),
                            inputs=[],
                            outputs=[]
                        )

                        # Add handler for comment submission
                        comment_textbox.submit(
                            fn=lambda comment: (save_feedback(QUERY_ID, "comment", comment), gr.Info("Thank you for your comment! ✨")),
                            inputs=[comment_textbox],
                            outputs=[]
                        )

                # Bottom row for examples
                with gr.Row():
                    with gr.Column(scale=5):
                        gr.Markdown("")
                        gr.Markdown("""
                                    ## πŸš€ Try these examples with suggested tools.
                                    """)
                        gr.Examples(
                            examples=[
                                [ "General Knowledge",
                                 "What is the capital of France?",
                                 ["Base_Generator_Tool"],
                                 "Paris"],

                                [ "Logical Reasoning",
                                 "How many r letters are in the word strawberry?",
                                 ["Base_Generator_Tool", "Python_Coder_Tool"],
                                 "3"],

                                [ "Web Search",
                                 "Who is the mother-in-law of Olivera Despina?",
                                 ["Base_Generator_Tool", "Google_Search_Tool", "Wikipedia_Search_Tool", "Web_Search_Tool"],
                                 "GΓΌlΓ§iΓ§ek Hatun"],


                                [ "Agentic Search",
                                "The object in the British Museum's collection with a museum number of 2012,5015.17 is the shell of a particular mollusk species. According to the abstract of a research article published in Science Advances in 2021, beads made from the shells of this species were found that are at least how many thousands of years old?",
                                 ["Base_Generator_Tool", "Python_Coder_Tool", "Google_Search_Tool", "Wikipedia_Search_Tool", "Web_Search_Tool"],
                                 "142,000"],

                                [ "Arithmetic Reasoning",
                                 "Which is bigger, 9.11 or 9.9?",
                                 ["Base_Generator_Tool", "Python_Coder_Tool"],
                                 "9.9"],

                                [ "Multi-step Reasoning",
                                 "Using the numbers [1, 1, 6, 9], create an expression that equals 24. You must use basic arithmetic operations (+, -, Γ—, /) and parentheses. For example, one solution for [1, 2, 3, 4] is (1+2+3)Γ—4.",
                                 ["Python_Coder_Tool"],
                                 "((1 + 1) * 9) + 6"],
                                
                                ["Scentific Reasoning",
                                "An investigator is studying cellular regeneration of epithelial cells. She has obtained a tissue sample from a normal thyroid gland for histopathologic examination. It shows follicles lined by a single layer of cube-like cells with large central nuclei. Which of the following parts of the female reproductive tract is also lined by this type of epithelium?\nA. Ovaries\nB. Vagina\nC. Fallopian tubes\nD. Vulva\nChoose the correct option.",
                                 ["Base_Generator_Tool", "Google_Search_Tool", "Wikipedia_Search_Tool", "Python_Coder_Tool"],
                                 "A. Ovaries"],
                            ],
                            inputs=[gr.Textbox(label="Category", visible=False), user_query, enabled_tools, gr.Textbox(label="Reference Answer", visible=False)],
                            # label="Try these examples with suggested tools."
                        )

        # Link button click to function
        run_button.click(
            fn=solve_problem_gradio,
            inputs=[user_query, max_steps, max_time, llm_model_engine, enabled_tools],
            outputs=chatbot_output,
            concurrency_limit=10,  # A10 GPU can handle ~10 concurrent requests with vLLM
            concurrency_id="agentflow_solver"  # Shared queue for managing GPU resource
        )
    #################### Gradio Interface ####################

    # Configure queue for high traffic - optimized for A10 GPU (40G RAM, 24G VRAM)
    demo.queue(
        default_concurrency_limit=10,  # Balanced for A10 GPU + vLLM inference
        max_size=50,  # Allow up to 20 requests in queue for traffic spikes
    )

    # Launch the Gradio app with optimized threading
    # demo.launch(ssr_mode=False)
    demo.launch(
        ssr_mode=False,
        share=True,
        max_threads=80  # Increase from default 40 to support high concurrency
    )

if __name__ == "__main__":
    import atexit

    args = parse_arguments()

    # All tools for AgentFlow
    all_tools = [
        "Base_Generator_Tool",
        "Python_Coder_Tool",
        "Google_Search_Tool",
        "Wikipedia_Search_Tool",
        "Web_Search_Tool"
    ]
    args.enabled_tools = ",".join(all_tools)

    # NOTE: Use the same name for the query cache directory as the dataset directory
    args.root_cache_dir = DATASET_DIR.name

    # Start vLLM service
    print("=" * 60)
    print("πŸ” Checking vLLM service status...")
    if not check_vllm_service():
        print(f"⚠️ vLLM service not running. Starting {VLLM_MODEL_NAME}...")
        start_vllm_service()
    else:
        print(f"βœ… vLLM service is already running on port {VLLM_PORT}")
    print("=" * 60)

    # Register cleanup function
    # atexit.register(stop_vllm_service)

    main(args)