David Tang
commited on
Commit
·
e0baf14
1
Parent(s):
0d34271
add modal backend
Browse files- modal-medgemma.py +269 -0
modal-medgemma.py
ADDED
|
@@ -0,0 +1,269 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
modal-medgemma.py
|
| 3 |
+
-----------------
|
| 4 |
+
|
| 5 |
+
This module defines a Modal app and FastAPI endpoint for running the MedGemma agent, a multimodal LLM that can process text and images. It provides a streaming API for inference, including Wikipedia tool-calling capabilities, and handles model download, loading, and inference with GPU support.
|
| 6 |
+
|
| 7 |
+
Nb. needs to be deployed with the following command:
|
| 8 |
+
`modal deploy modal-medgemma.py`
|
| 9 |
+
|
| 10 |
+
Key components:
|
| 11 |
+
- Modal app and volume setup for model weights
|
| 12 |
+
- MedGemmaAgent class for model loading and inference
|
| 13 |
+
- FastAPI endpoint for streaming responses
|
| 14 |
+
- Utility for processing base64-encoded images
|
| 15 |
+
"""
|
| 16 |
+
import modal
|
| 17 |
+
from typing import Optional, Generator, Dict, Any, List
|
| 18 |
+
import os
|
| 19 |
+
from fastapi import Security, HTTPException, Depends
|
| 20 |
+
from fastapi.security.api_key import APIKeyHeader
|
| 21 |
+
from fastapi.responses import StreamingResponse
|
| 22 |
+
from pydantic import BaseModel
|
| 23 |
+
import json
|
| 24 |
+
import base64
|
| 25 |
+
from PIL import Image
|
| 26 |
+
import io
|
| 27 |
+
|
| 28 |
+
app = modal.App("example-medgemma-agent")
|
| 29 |
+
volume = modal.Volume.from_name("model-weights-vol", create_if_missing=True)
|
| 30 |
+
MODEL_DIR = "/models"
|
| 31 |
+
# MODEL_ID = "google/medgemma-4b-it"
|
| 32 |
+
MODEL_ID = "unsloth/medgemma-4b-it-unsloth-bnb-4bit"
|
| 33 |
+
MINUTES = 60
|
| 34 |
+
|
| 35 |
+
API_KEY_NAME = "X-API-Key"
|
| 36 |
+
api_key_header = APIKeyHeader(name=API_KEY_NAME, auto_error=True)
|
| 37 |
+
|
| 38 |
+
async def get_api_key(api_key_header: str = Security(api_key_header)):
|
| 39 |
+
"""
|
| 40 |
+
Validates the provided API key against the environment variable.
|
| 41 |
+
|
| 42 |
+
Args:
|
| 43 |
+
api_key_header (str): The API key provided in the request header.
|
| 44 |
+
|
| 45 |
+
Raises:
|
| 46 |
+
HTTPException: If the API key is invalid.
|
| 47 |
+
|
| 48 |
+
Returns:
|
| 49 |
+
str: The validated API key.
|
| 50 |
+
"""
|
| 51 |
+
if api_key_header != os.environ["FASTAPI_KEY"]:
|
| 52 |
+
raise HTTPException(
|
| 53 |
+
status_code=403, detail="Invalid API Key"
|
| 54 |
+
)
|
| 55 |
+
return api_key_header
|
| 56 |
+
|
| 57 |
+
image = (
|
| 58 |
+
modal.Image.debian_slim()
|
| 59 |
+
.pip_install(
|
| 60 |
+
"smolagents[vllm]",
|
| 61 |
+
"fastapi[standard]",
|
| 62 |
+
"wikipedia-api",
|
| 63 |
+
"accelerate",
|
| 64 |
+
"bitsandbytes",
|
| 65 |
+
"huggingface-hub[hf_transfer]",
|
| 66 |
+
"Pillow")
|
| 67 |
+
.env({
|
| 68 |
+
"HF_HUB_ENABLE_HF_TRANSFER": "1",
|
| 69 |
+
"HF_HUB_CACHE": MODEL_DIR
|
| 70 |
+
})
|
| 71 |
+
)
|
| 72 |
+
|
| 73 |
+
with image.imports():
|
| 74 |
+
from smolagents import VLLMModel, ToolCallingAgent, tool
|
| 75 |
+
from pydantic import BaseModel
|
| 76 |
+
import wikipediaapi
|
| 77 |
+
|
| 78 |
+
@app.function(
|
| 79 |
+
image=image,
|
| 80 |
+
secrets=[modal.Secret.from_name("access_medgemma_hf")],
|
| 81 |
+
volumes={MODEL_DIR: volume}
|
| 82 |
+
)
|
| 83 |
+
def download_model():
|
| 84 |
+
"""
|
| 85 |
+
Downloads the model weights from Hugging Face Hub using the provided token.
|
| 86 |
+
|
| 87 |
+
Returns:
|
| 88 |
+
dict: Status message indicating success.
|
| 89 |
+
"""
|
| 90 |
+
from huggingface_hub import snapshot_download
|
| 91 |
+
snapshot_download(
|
| 92 |
+
repo_id=MODEL_ID,
|
| 93 |
+
token=os.environ["HF_TOKEN"]
|
| 94 |
+
)
|
| 95 |
+
return {"status": "Model downloaded successfully"}
|
| 96 |
+
|
| 97 |
+
@app.cls(
|
| 98 |
+
image=image,
|
| 99 |
+
gpu="L4:1",
|
| 100 |
+
volumes={MODEL_DIR: volume},
|
| 101 |
+
min_containers=1,
|
| 102 |
+
max_containers=1,
|
| 103 |
+
timeout=15 * MINUTES,
|
| 104 |
+
secrets=[modal.Secret.from_name("access_medgemma_hf")],
|
| 105 |
+
)
|
| 106 |
+
class MedGemmaAgent:
|
| 107 |
+
"""
|
| 108 |
+
Modal class for managing the MedGemma model and running inference with optional tool-calling.
|
| 109 |
+
"""
|
| 110 |
+
@modal.enter()
|
| 111 |
+
def load_models(self):
|
| 112 |
+
"""
|
| 113 |
+
Loads the MedGemma model into memory and prepares it for inference.
|
| 114 |
+
Downloads the model weights if not already present.
|
| 115 |
+
"""
|
| 116 |
+
download_model.remote()
|
| 117 |
+
model_kwargs = {
|
| 118 |
+
"max_model_len": 8192,
|
| 119 |
+
"dtype": "bfloat16",
|
| 120 |
+
"gpu_memory_utilization": 0.95,
|
| 121 |
+
"tensor_parallel_size": 1,
|
| 122 |
+
"trust_remote_code": True
|
| 123 |
+
}
|
| 124 |
+
self.model = VLLMModel(
|
| 125 |
+
model_id=MODEL_ID,
|
| 126 |
+
model_kwargs=model_kwargs
|
| 127 |
+
)
|
| 128 |
+
print(f"Model: {MODEL_ID} loaded successfully")
|
| 129 |
+
|
| 130 |
+
@modal.method()
|
| 131 |
+
def run(self, prompt: str, images: Optional[List[Image.Image]] = None) -> Generator[Dict[str, Any], None, None]:
|
| 132 |
+
"""
|
| 133 |
+
Runs the MedGemma agent on the provided prompt and optional images, yielding streaming responses.
|
| 134 |
+
|
| 135 |
+
Args:
|
| 136 |
+
prompt (str): The user prompt to process.
|
| 137 |
+
images (Optional[List[Image.Image]]): List of PIL Images to provide as context (optional).
|
| 138 |
+
|
| 139 |
+
Yields:
|
| 140 |
+
Dict[str, Any]: Streaming response chunks, including 'thinking' and 'final' messages.
|
| 141 |
+
"""
|
| 142 |
+
@tool
|
| 143 |
+
def wiki(query: str) -> str:
|
| 144 |
+
"""
|
| 145 |
+
Fetches a summary of a Wikipedia page based on a given search query (only one word or group of words).
|
| 146 |
+
|
| 147 |
+
Args:
|
| 148 |
+
query: The search term for the Wikipedia page (only one word or group of words).
|
| 149 |
+
"""
|
| 150 |
+
wiki = wikipediaapi.Wikipedia(language="en", user_agent="MinimalAgent/1.0")
|
| 151 |
+
page = wiki.page(query)
|
| 152 |
+
if not page.exists():
|
| 153 |
+
return "No Wikipedia page found."
|
| 154 |
+
return page.summary[:1000]
|
| 155 |
+
|
| 156 |
+
self.agent = ToolCallingAgent(
|
| 157 |
+
tools=[wiki],
|
| 158 |
+
model=self.model,
|
| 159 |
+
max_steps=3
|
| 160 |
+
)
|
| 161 |
+
|
| 162 |
+
# Yield thinking step
|
| 163 |
+
yield {
|
| 164 |
+
"type": "thinking",
|
| 165 |
+
"content": {"message": "Starting to process your request..."}
|
| 166 |
+
}
|
| 167 |
+
|
| 168 |
+
# Run the agent and capture the result
|
| 169 |
+
result = self.agent.run(
|
| 170 |
+
task=prompt,
|
| 171 |
+
stream=False,
|
| 172 |
+
reset=True,
|
| 173 |
+
images=images if images else None,
|
| 174 |
+
additional_args={"flatten_messages_as_text": False},
|
| 175 |
+
max_steps=3
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
# Yield the final response
|
| 179 |
+
yield {
|
| 180 |
+
"type": "final",
|
| 181 |
+
"content": {"response": result}
|
| 182 |
+
}
|
| 183 |
+
|
| 184 |
+
class PromptRequest(BaseModel):
|
| 185 |
+
"""
|
| 186 |
+
Request model for the /run_medgemma endpoint.
|
| 187 |
+
|
| 188 |
+
Attributes:
|
| 189 |
+
prompt (str): The user prompt to process.
|
| 190 |
+
image (Optional[str]): Base64-encoded image string (optional).
|
| 191 |
+
history (Optional[list]): Conversation history (optional).
|
| 192 |
+
"""
|
| 193 |
+
prompt: str
|
| 194 |
+
image: Optional[str] = None # Base64 encoded image
|
| 195 |
+
history: Optional[list] = None
|
| 196 |
+
|
| 197 |
+
class GenerationResponse(BaseModel):
|
| 198 |
+
"""
|
| 199 |
+
Response model for non-streaming generation (not used in this file).
|
| 200 |
+
|
| 201 |
+
Attributes:
|
| 202 |
+
response (str): The generated response.
|
| 203 |
+
"""
|
| 204 |
+
response: str
|
| 205 |
+
|
| 206 |
+
class StreamResponse(BaseModel):
|
| 207 |
+
"""
|
| 208 |
+
Response model for streaming responses.
|
| 209 |
+
|
| 210 |
+
Attributes:
|
| 211 |
+
type (str): The type of message ('thinking', 'tool_call', 'tool_result', 'final').
|
| 212 |
+
content (Dict[str, Any]): The content of the message.
|
| 213 |
+
"""
|
| 214 |
+
type: str # 'thinking', 'tool_call', 'tool_result', 'final'
|
| 215 |
+
content: Dict[str, Any]
|
| 216 |
+
|
| 217 |
+
def process_image(image_base64: Optional[str]) -> Optional[Image.Image]:
|
| 218 |
+
"""
|
| 219 |
+
Decodes a base64-encoded image string into a PIL Image.
|
| 220 |
+
|
| 221 |
+
Args:
|
| 222 |
+
image_base64 (Optional[str]): Base64-encoded image string.
|
| 223 |
+
|
| 224 |
+
Returns:
|
| 225 |
+
Optional[Image.Image]: The decoded PIL Image, or None if decoding fails or input is None.
|
| 226 |
+
"""
|
| 227 |
+
if not image_base64:
|
| 228 |
+
return None
|
| 229 |
+
try:
|
| 230 |
+
image_data = base64.b64decode(image_base64)
|
| 231 |
+
return Image.open(io.BytesIO(image_data))
|
| 232 |
+
except Exception as e:
|
| 233 |
+
print(f"Error processing image: {e}")
|
| 234 |
+
return None
|
| 235 |
+
|
| 236 |
+
@app.function(
|
| 237 |
+
image=image,
|
| 238 |
+
secrets=[
|
| 239 |
+
modal.Secret.from_name("access_medgemma_hf"),
|
| 240 |
+
modal.Secret.from_name("FASTAPI_KEY")
|
| 241 |
+
]
|
| 242 |
+
)
|
| 243 |
+
@modal.fastapi_endpoint(method="POST")
|
| 244 |
+
async def run_medgemma(request: PromptRequest, api_key: str = Depends(get_api_key)):
|
| 245 |
+
"""
|
| 246 |
+
FastAPI endpoint for running the MedGemma agent with streaming responses.
|
| 247 |
+
|
| 248 |
+
Args:
|
| 249 |
+
request (PromptRequest): The request payload containing prompt and optional image.
|
| 250 |
+
api_key (str): The validated API key (injected by Depends).
|
| 251 |
+
|
| 252 |
+
Returns:
|
| 253 |
+
StreamingResponse: An event-stream response yielding model output chunks.
|
| 254 |
+
"""
|
| 255 |
+
model_handler = MedGemmaAgent()
|
| 256 |
+
|
| 257 |
+
# Process image if provided
|
| 258 |
+
image = process_image(request.image)
|
| 259 |
+
images = [image] if image else None
|
| 260 |
+
|
| 261 |
+
async def generate():
|
| 262 |
+
stream = model_handler.run.remote_gen.aio(request.prompt, images=images)
|
| 263 |
+
async for chunk in stream:
|
| 264 |
+
yield f"data: {json.dumps(chunk)}\n\n"
|
| 265 |
+
|
| 266 |
+
return StreamingResponse(
|
| 267 |
+
generate(),
|
| 268 |
+
media_type="text/event-stream"
|
| 269 |
+
)
|