Update app.py
Browse files
app.py
CHANGED
|
@@ -8,18 +8,7 @@ It exposes the following tools:
|
|
| 8 |
|
| 9 |
import os
|
| 10 |
from dotenv import load_dotenv
|
| 11 |
-
load_dotenv() # Load environment variables
|
| 12 |
-
|
| 13 |
-
import logging
|
| 14 |
-
|
| 15 |
-
# Configure logging to write to a file instead of stdout/stderr
|
| 16 |
-
# This avoids interference with the MCP communication channel
|
| 17 |
-
logging.basicConfig(
|
| 18 |
-
filename='hackathon-mcp.log', # Log to a file instead of stdout/stderr
|
| 19 |
-
level=logging.INFO,
|
| 20 |
-
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
| 21 |
-
)
|
| 22 |
-
logger = logging.getLogger(__name__)
|
| 23 |
|
| 24 |
import gradio as gr
|
| 25 |
import requests
|
|
@@ -39,14 +28,14 @@ def search_knowledge_base_for_context(query: str) -> str:
|
|
| 39 |
Returns:
|
| 40 |
str: Relevant text content that can be used by the LLM to answer the query.
|
| 41 |
"""
|
| 42 |
-
|
| 43 |
|
| 44 |
data = {"query": query}
|
| 45 |
modal_url = os.getenv("MODAL_LABS_HACKATHON_RAG_TOOLS_URL")
|
| 46 |
-
response = requests.post(modal_url, json=data, timeout=
|
| 47 |
-
|
| 48 |
if response.status_code != 200:
|
| 49 |
-
|
| 50 |
return "Error in retrieving context from the knowledge base."
|
| 51 |
return response.text or "No relevant information found"
|
| 52 |
|
|
@@ -71,14 +60,14 @@ def research_write_review_topic(query: str) -> str:
|
|
| 71 |
Returns:
|
| 72 |
str: A nicely formatted string.
|
| 73 |
"""
|
| 74 |
-
|
| 75 |
|
| 76 |
data = {"query": query}
|
| 77 |
modal_url = os.getenv("MODAL_LABS_HACKATHON_RESEARCH_TOOLS_URL")
|
| 78 |
-
response = requests.post(modal_url, json=data, timeout=
|
| 79 |
-
|
| 80 |
if response.status_code != 200:
|
| 81 |
-
|
| 82 |
return "Error in retrieving research topic."
|
| 83 |
return response.text or "Research completed, but no content was generated."
|
| 84 |
|
|
@@ -121,7 +110,7 @@ with gr.Blocks() as server_info:
|
|
| 121 |
mcp_rag_tool = gr.Interface(
|
| 122 |
fn=search_knowledge_base_for_context,
|
| 123 |
inputs=["text"],
|
| 124 |
-
outputs=[gr.Textbox(label="Knowledge Base", max_lines=
|
| 125 |
title="MCP RAG Tool",
|
| 126 |
description="Searches and retrieves relevant context from a knowledge base"
|
| 127 |
)
|
|
@@ -129,10 +118,10 @@ mcp_rag_tool = gr.Interface(
|
|
| 129 |
research_tool = gr.Interface(
|
| 130 |
fn=research_write_review_topic,
|
| 131 |
inputs=["text"],
|
| 132 |
-
outputs=[gr.Textbox(label="Reviewed Topic", max_lines=
|
| 133 |
title="Research Tool",
|
| 134 |
description="Helps with report writing with research, writing, and review agents on any topic. ",
|
| 135 |
-
concurrency_limit=
|
| 136 |
)
|
| 137 |
|
| 138 |
named_interfaces = {
|
|
@@ -153,7 +142,7 @@ mcp_server = gr.TabbedInterface(
|
|
| 153 |
|
| 154 |
# Launch the MCP Server
|
| 155 |
if __name__ == "__main__":
|
| 156 |
-
mcp_server.queue(default_concurrency_limit=
|
| 157 |
mcp_server.launch(
|
| 158 |
server_name="0.0.0.0",
|
| 159 |
server_port=7860,
|
|
|
|
| 8 |
|
| 9 |
import os
|
| 10 |
from dotenv import load_dotenv
|
| 11 |
+
load_dotenv() # Load environment variables
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
import gradio as gr
|
| 14 |
import requests
|
|
|
|
| 28 |
Returns:
|
| 29 |
str: Relevant text content that can be used by the LLM to answer the query.
|
| 30 |
"""
|
| 31 |
+
print(f"Searching knowledge base for RAG context via modal labs: {query}")
|
| 32 |
|
| 33 |
data = {"query": query}
|
| 34 |
modal_url = os.getenv("MODAL_LABS_HACKATHON_RAG_TOOLS_URL")
|
| 35 |
+
response = requests.post(modal_url, json=data, timeout=600.0)
|
| 36 |
+
print(f"modal RAG Response: {response}")
|
| 37 |
if response.status_code != 200:
|
| 38 |
+
print(f"Error in modal RAG response: {response.status_code} - {response.text}")
|
| 39 |
return "Error in retrieving context from the knowledge base."
|
| 40 |
return response.text or "No relevant information found"
|
| 41 |
|
|
|
|
| 60 |
Returns:
|
| 61 |
str: A nicely formatted string.
|
| 62 |
"""
|
| 63 |
+
print(f"Researching the topic via modal labs: {query}")
|
| 64 |
|
| 65 |
data = {"query": query}
|
| 66 |
modal_url = os.getenv("MODAL_LABS_HACKATHON_RESEARCH_TOOLS_URL")
|
| 67 |
+
response = requests.post(modal_url, json=data, timeout=600.0)
|
| 68 |
+
print(f"modal RESEARCH Response: {response}")
|
| 69 |
if response.status_code != 200:
|
| 70 |
+
print(f"Error in modal RESEARCH response: {response.status_code} - {response.text}")
|
| 71 |
return "Error in retrieving research topic."
|
| 72 |
return response.text or "Research completed, but no content was generated."
|
| 73 |
|
|
|
|
| 110 |
mcp_rag_tool = gr.Interface(
|
| 111 |
fn=search_knowledge_base_for_context,
|
| 112 |
inputs=["text"],
|
| 113 |
+
outputs=[gr.Textbox(label="Knowledge Base", max_lines=15)],
|
| 114 |
title="MCP RAG Tool",
|
| 115 |
description="Searches and retrieves relevant context from a knowledge base"
|
| 116 |
)
|
|
|
|
| 118 |
research_tool = gr.Interface(
|
| 119 |
fn=research_write_review_topic,
|
| 120 |
inputs=["text"],
|
| 121 |
+
outputs=[gr.Textbox(label="Reviewed Topic", max_lines=15)],
|
| 122 |
title="Research Tool",
|
| 123 |
description="Helps with report writing with research, writing, and review agents on any topic. ",
|
| 124 |
+
concurrency_limit=1
|
| 125 |
)
|
| 126 |
|
| 127 |
named_interfaces = {
|
|
|
|
| 142 |
|
| 143 |
# Launch the MCP Server
|
| 144 |
if __name__ == "__main__":
|
| 145 |
+
mcp_server.queue(default_concurrency_limit=1)
|
| 146 |
mcp_server.launch(
|
| 147 |
server_name="0.0.0.0",
|
| 148 |
server_port=7860,
|