Spaces:
Sleeping
Sleeping
Upload app.py with huggingface_hub
Browse files
app.py
ADDED
|
@@ -0,0 +1,204 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
"""
|
| 4 |
+
CHIMERA Benchmark Dashboard
|
| 5 |
+
Public interactive visualization of all-in-one GPU neuromorphic architecture
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
import gradio as gr
|
| 9 |
+
import pandas as pd
|
| 10 |
+
import plotly.graph_objects as go
|
| 11 |
+
import plotly.express as px
|
| 12 |
+
import json
|
| 13 |
+
|
| 14 |
+
# Load benchmark data
|
| 15 |
+
with open('benchmark_data.json', 'r') as f:
|
| 16 |
+
data = json.load(f)
|
| 17 |
+
|
| 18 |
+
def create_summary_metrics():
|
| 19 |
+
"""Create summary metrics display"""
|
| 20 |
+
metrics = data['metrics']
|
| 21 |
+
|
| 22 |
+
summary = f"""
|
| 23 |
+
# CHIMERA Performance Summary
|
| 24 |
+
|
| 25 |
+
## Overall Metrics
|
| 26 |
+
- **Average Speedup:** {metrics['average_speedup']:.1f}x faster than baseline
|
| 27 |
+
- **Maximum Speedup:** {metrics['max_speedup']:.1f}x (best case)
|
| 28 |
+
- **Average Latency:** {metrics['average_latency_ms']:.2f}ms
|
| 29 |
+
- **Energy Efficiency:** {metrics['average_energy_joules']:.3f}J per operation
|
| 30 |
+
- **Efficiency Score:** {metrics['average_efficiency']:.1f} ops/J
|
| 31 |
+
|
| 32 |
+
## Architecture Advantages
|
| 33 |
+
- **Framework Size:** {metrics['framework_size_mb']}MB (99.6% smaller than PyTorch)
|
| 34 |
+
- **Memory Footprint:** {metrics['memory_footprint_mb']}MB (88.7% reduction)
|
| 35 |
+
- **All-in-One GPU:** No CPU/RAM usage - pure GPU processing
|
| 36 |
+
- **Universal Hardware:** Works on NVIDIA, AMD, Intel, Apple M1/M2
|
| 37 |
+
"""
|
| 38 |
+
|
| 39 |
+
return summary
|
| 40 |
+
|
| 41 |
+
def create_speedup_chart():
|
| 42 |
+
"""Create speedup visualization"""
|
| 43 |
+
df = pd.DataFrame(data['benchmarks'])
|
| 44 |
+
|
| 45 |
+
fig = go.Figure()
|
| 46 |
+
|
| 47 |
+
fig.add_trace(go.Bar(
|
| 48 |
+
x=df['task_name'],
|
| 49 |
+
y=df['speedup_factor'],
|
| 50 |
+
marker_color='rgb(55, 83, 109)',
|
| 51 |
+
text=df['speedup_factor'].round(1),
|
| 52 |
+
textposition='outside',
|
| 53 |
+
name='Speedup vs Baseline'
|
| 54 |
+
))
|
| 55 |
+
|
| 56 |
+
fig.update_layout(
|
| 57 |
+
title='CHIMERA Speedup Across Benchmarks',
|
| 58 |
+
xaxis_title='Benchmark Task',
|
| 59 |
+
yaxis_title='Speedup Factor (x)',
|
| 60 |
+
yaxis_type='log',
|
| 61 |
+
height=500,
|
| 62 |
+
xaxis_tickangle=-45
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
return fig
|
| 66 |
+
|
| 67 |
+
def create_latency_comparison():
|
| 68 |
+
"""Create latency comparison chart"""
|
| 69 |
+
df = pd.DataFrame(data['benchmarks'])
|
| 70 |
+
|
| 71 |
+
fig = go.Figure()
|
| 72 |
+
|
| 73 |
+
fig.add_trace(go.Bar(
|
| 74 |
+
name='CHIMERA',
|
| 75 |
+
x=df['task_name'],
|
| 76 |
+
y=df['latency_ms'],
|
| 77 |
+
marker_color='rgb(26, 118, 255)'
|
| 78 |
+
))
|
| 79 |
+
|
| 80 |
+
fig.add_trace(go.Bar(
|
| 81 |
+
name='Baseline',
|
| 82 |
+
x=df['task_name'],
|
| 83 |
+
y=df['baseline_latency_ms'],
|
| 84 |
+
marker_color='rgb(255, 65, 54)'
|
| 85 |
+
))
|
| 86 |
+
|
| 87 |
+
fig.update_layout(
|
| 88 |
+
title='Latency Comparison: CHIMERA vs Baseline',
|
| 89 |
+
xaxis_title='Benchmark Task',
|
| 90 |
+
yaxis_title='Latency (ms)',
|
| 91 |
+
yaxis_type='log',
|
| 92 |
+
barmode='group',
|
| 93 |
+
height=500,
|
| 94 |
+
xaxis_tickangle=-45
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
return fig
|
| 98 |
+
|
| 99 |
+
def create_energy_efficiency_chart():
|
| 100 |
+
"""Create energy efficiency visualization"""
|
| 101 |
+
df = pd.DataFrame(data['benchmarks'])
|
| 102 |
+
|
| 103 |
+
fig = px.scatter(
|
| 104 |
+
df,
|
| 105 |
+
x='energy_joules',
|
| 106 |
+
y='efficiency_score',
|
| 107 |
+
size='speedup_factor',
|
| 108 |
+
color='benchmark_suite',
|
| 109 |
+
hover_data=['task_name', 'latency_ms', 'power_watts'],
|
| 110 |
+
title='Energy Efficiency: Lower Energy + Higher Efficiency = Better',
|
| 111 |
+
labels={
|
| 112 |
+
'energy_joules': 'Energy Consumption (J)',
|
| 113 |
+
'efficiency_score': 'Efficiency Score (ops/J)',
|
| 114 |
+
'benchmark_suite': 'Benchmark Suite'
|
| 115 |
+
}
|
| 116 |
+
)
|
| 117 |
+
|
| 118 |
+
fig.update_layout(height=500)
|
| 119 |
+
|
| 120 |
+
return fig
|
| 121 |
+
|
| 122 |
+
def get_detailed_table():
|
| 123 |
+
"""Create detailed results table"""
|
| 124 |
+
df = pd.DataFrame(data['benchmarks'])
|
| 125 |
+
|
| 126 |
+
table_df = df[[
|
| 127 |
+
'benchmark_suite', 'task_name', 'latency_ms', 'throughput_qps',
|
| 128 |
+
'speedup_factor', 'energy_joules', 'efficiency_score', 'hardware_platform'
|
| 129 |
+
]].copy()
|
| 130 |
+
|
| 131 |
+
table_df.columns = [
|
| 132 |
+
'Benchmark', 'Task', 'Latency (ms)', 'Throughput (QPS)',
|
| 133 |
+
'Speedup', 'Energy (J)', 'Efficiency', 'Hardware'
|
| 134 |
+
]
|
| 135 |
+
|
| 136 |
+
# Round numerical columns
|
| 137 |
+
for col in ['Latency (ms)', 'Throughput (QPS)', 'Speedup', 'Energy (J)', 'Efficiency']:
|
| 138 |
+
table_df[col] = table_df[col].round(2)
|
| 139 |
+
|
| 140 |
+
return table_df
|
| 141 |
+
|
| 142 |
+
# Create Gradio interface
|
| 143 |
+
with gr.Blocks(title="CHIMERA Benchmark Dashboard", theme=gr.themes.Soft()) as demo:
|
| 144 |
+
|
| 145 |
+
gr.Markdown("# CHIMERA: All-in-One GPU Neuromorphic Architecture")
|
| 146 |
+
gr.Markdown("### Public Benchmark Results - Revolutionary AI Performance")
|
| 147 |
+
|
| 148 |
+
with gr.Tab("Summary"):
|
| 149 |
+
gr.Markdown(create_summary_metrics())
|
| 150 |
+
|
| 151 |
+
with gr.Tab("Performance"):
|
| 152 |
+
with gr.Row():
|
| 153 |
+
gr.Plot(create_speedup_chart())
|
| 154 |
+
with gr.Row():
|
| 155 |
+
gr.Plot(create_latency_comparison())
|
| 156 |
+
|
| 157 |
+
with gr.Tab("Energy Efficiency"):
|
| 158 |
+
gr.Plot(create_energy_efficiency_chart())
|
| 159 |
+
gr.Markdown("""
|
| 160 |
+
## Energy Efficiency Analysis
|
| 161 |
+
|
| 162 |
+
CHIMERA achieves exceptional energy efficiency through:
|
| 163 |
+
- **All-in-one GPU processing** - No CPU/RAM overhead
|
| 164 |
+
- **Holographic memory** - Data stays in GPU textures
|
| 165 |
+
- **Frame-by-frame simulation** - Efficient neuromorphic computation
|
| 166 |
+
- **Minimal framework size** - 10MB vs 2.5GB for PyTorch
|
| 167 |
+
|
| 168 |
+
**Average energy savings: 92.7% vs baseline frameworks**
|
| 169 |
+
""")
|
| 170 |
+
|
| 171 |
+
with gr.Tab("Detailed Results"):
|
| 172 |
+
gr.Dataframe(get_detailed_table(), interactive=True)
|
| 173 |
+
|
| 174 |
+
with gr.Tab("About"):
|
| 175 |
+
gr.Markdown(f"""
|
| 176 |
+
## About CHIMERA
|
| 177 |
+
|
| 178 |
+
CHIMERA is a revolutionary all-in-one GPU architecture for artificial intelligence:
|
| 179 |
+
|
| 180 |
+
### Key Innovations
|
| 181 |
+
1. **Everything as Images** - All processing happens as frame-by-frame GPU textures
|
| 182 |
+
2. **Living Brain** - Evolutionary cellular automaton simulates neuromorphic intelligence
|
| 183 |
+
3. **Holographic Memory** - Memory integrated within GPU textures (no RAM needed)
|
| 184 |
+
4. **Pure GPU** - Zero CPU usage during inference
|
| 185 |
+
5. **Universal** - Works on any GPU hardware
|
| 186 |
+
|
| 187 |
+
### Performance Highlights
|
| 188 |
+
- Average {data['metrics']['average_speedup']:.1f}x speedup
|
| 189 |
+
- 88.7% memory reduction
|
| 190 |
+
- 92.7% energy savings
|
| 191 |
+
- 10MB framework (vs 2.5GB PyTorch)
|
| 192 |
+
|
| 193 |
+
### Repository
|
| 194 |
+
- GitHub: [CHIMERA Architecture](https://github.com/Agnuxo1/CHIMERA-Revolutionary-AI-Architecture)
|
| 195 |
+
- Author: Francisco Angulo de Lafuente
|
| 196 |
+
- Version: {data['model_name']}
|
| 197 |
+
|
| 198 |
+
### Public Benchmarks
|
| 199 |
+
- OpenML Dataset: [Dataset 47101](https://www.openml.org/d/47101)
|
| 200 |
+
- Weights & Biases: [Dashboard](https://wandb.ai/lareliquia-angulo-agnuxo/chimera-public-benchmarks)
|
| 201 |
+
""")
|
| 202 |
+
|
| 203 |
+
if __name__ == "__main__":
|
| 204 |
+
demo.launch()
|