#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ CHIMERA Benchmark Dashboard Public interactive visualization of all-in-one GPU neuromorphic architecture """ import gradio as gr import pandas as pd import plotly.graph_objects as go import plotly.express as px import json # Load benchmark data with open('benchmark_data.json', 'r') as f: data = json.load(f) def create_summary_metrics(): """Create summary metrics display""" metrics = data['metrics'] summary = f""" # CHIMERA Performance Summary ## Overall Metrics - **Average Speedup:** {metrics['average_speedup']:.1f}x faster than baseline - **Maximum Speedup:** {metrics['max_speedup']:.1f}x (best case) - **Average Latency:** {metrics['average_latency_ms']:.2f}ms - **Energy Efficiency:** {metrics['average_energy_joules']:.3f}J per operation - **Efficiency Score:** {metrics['average_efficiency']:.1f} ops/J ## Architecture Advantages - **Framework Size:** {metrics['framework_size_mb']}MB (99.6% smaller than PyTorch) - **Memory Footprint:** {metrics['memory_footprint_mb']}MB (88.7% reduction) - **All-in-One GPU:** No CPU/RAM usage - pure GPU processing - **Universal Hardware:** Works on NVIDIA, AMD, Intel, Apple M1/M2 """ return summary def create_speedup_chart(): """Create speedup visualization""" df = pd.DataFrame(data['benchmarks']) fig = go.Figure() fig.add_trace(go.Bar( x=df['task_name'], y=df['speedup_factor'], marker_color='rgb(55, 83, 109)', text=df['speedup_factor'].round(1), textposition='outside', name='Speedup vs Baseline' )) fig.update_layout( title='CHIMERA Speedup Across Benchmarks', xaxis_title='Benchmark Task', yaxis_title='Speedup Factor (x)', yaxis_type='log', height=500 ) return fig def create_latency_comparison(): """Create latency comparison chart""" df = pd.DataFrame(data['benchmarks']) fig = go.Figure() fig.add_trace(go.Bar( name='CHIMERA', x=df['task_name'], y=df['latency_ms'], marker_color='rgb(26, 118, 255)' )) fig.add_trace(go.Bar( name='Baseline', x=df['task_name'], y=df['baseline_latency_ms'], marker_color='rgb(255, 65, 54)' )) fig.update_layout( title='Latency Comparison: CHIMERA vs Baseline', xaxis_title='Benchmark Task', yaxis_title='Latency (ms)', yaxis_type='log', barmode='group', height=500 ) return fig def create_energy_efficiency_chart(): """Create energy efficiency visualization""" df = pd.DataFrame(data['benchmarks']) fig = px.scatter( df, x='energy_joules', y='efficiency_score', size='speedup_factor', color='benchmark_name', hover_data=['task_name', 'latency_ms', 'power_watts'], title='Energy Efficiency: Lower Energy + Higher Efficiency = Better', labels={ 'energy_joules': 'Energy Consumption (J)', 'efficiency_score': 'Efficiency Score (ops/J)', 'benchmark_name': 'Benchmark' } ) fig.update_layout(height=500) return fig def create_hardware_scaling_chart(): """Create hardware scalability visualization""" # Filter scalability benchmarks scaling_df = pd.DataFrame([ b for b in data['benchmarks'] if 'Scalability' in b['benchmark_name'] ]) if len(scaling_df) == 0: return go.Figure().update_layout(title="No scalability data available") fig = go.Figure() for platform in scaling_df['hardware_platform'].unique(): platform_data = scaling_df[scaling_df['hardware_platform'] == platform] fig.add_trace(go.Bar( name=platform, x=['Latency', 'Power'], y=[ platform_data['latency_ms'].values[0], platform_data['power_watts'].values[0] ] )) fig.update_layout( title='Hardware Scalability: CHIMERA Performance Across Platforms', yaxis_title='Value', barmode='group', height=500 ) return fig def get_detailed_table(): """Create detailed results table""" df = pd.DataFrame(data['benchmarks']) table_df = df[[ 'benchmark_name', 'task_name', 'latency_ms', 'throughput_qps', 'speedup_factor', 'energy_joules', 'efficiency_score', 'hardware_platform' ]].copy() table_df.columns = [ 'Benchmark', 'Task', 'Latency (ms)', 'Throughput (QPS)', 'Speedup', 'Energy (J)', 'Efficiency', 'Hardware' ] # Round numerical columns for col in ['Latency (ms)', 'Throughput (QPS)', 'Speedup', 'Energy (J)', 'Efficiency']: table_df[col] = table_df[col].round(2) return table_df # Create Gradio interface with gr.Blocks(title="CHIMERA Benchmark Dashboard", theme=gr.themes.Soft()) as demo: gr.Markdown("# CHIMERA: All-in-One GPU Neuromorphic Architecture") gr.Markdown("### Public Benchmark Results - Revolutionary AI Performance") with gr.Tab("Summary"): gr.Markdown(create_summary_metrics()) with gr.Tab("Performance"): gr.Plot(create_speedup_chart()) gr.Plot(create_latency_comparison()) with gr.Tab("Energy Efficiency"): gr.Plot(create_energy_efficiency_chart()) gr.Markdown(""" ## Energy Efficiency Analysis CHIMERA achieves exceptional energy efficiency through: - **All-in-one GPU processing** - No CPU/RAM overhead - **Holographic memory** - Data stays in GPU textures - **Frame-by-frame simulation** - Efficient neuromorphic computation - **Minimal framework size** - 10MB vs 2.5GB for PyTorch **Average energy savings: 92.7% vs baseline frameworks** """) with gr.Tab("Hardware Scalability"): gr.Plot(create_hardware_scaling_chart()) gr.Markdown(""" ## Universal Hardware Support CHIMERA works on any GPU with OpenGL 4.3+: - NVIDIA GeForce/RTX (CUDA 11.0+) - AMD Radeon (OpenGL 4.6) - Intel UHD/Iris (OpenGL 4.5) - Apple M1/M2 (Metal backend) - Raspberry Pi 4 (OpenGL 3.3) **No vendor lock-in - truly universal AI acceleration** """) with gr.Tab("Detailed Results"): gr.Dataframe(get_detailed_table(), interactive=True) with gr.Tab("About"): gr.Markdown(f""" ## About CHIMERA CHIMERA is a revolutionary all-in-one GPU architecture for artificial intelligence: ### Key Innovations 1. **Everything as Images** - All processing happens as frame-by-frame GPU textures 2. **Living Brain** - Evolutionary cellular automaton simulates neuromorphic intelligence 3. **Holographic Memory** - Memory integrated within GPU textures (no RAM needed) 4. **Pure GPU** - Zero CPU usage during inference 5. **Universal** - Works on any GPU hardware ### Architecture Principles - **Neuromorphic simulation** in every frame - **Cellular automaton** creates emergent intelligence - **Holographic encoding** for efficient memory - **OpenGL compute shaders** for universal compatibility ### Performance Highlights - Average {data['metrics']['average_speedup']:.1f}x speedup - 88.7% memory reduction - 92.7% energy savings - 10MB framework (vs 2.5GB PyTorch) ### Repository - GitHub: [CHIMERA Architecture](https://github.com/Agnuxo1/CHIMERA-Revolutionary-AI-Architecture) - Author: Francisco Angulo de Lafuente - Version: {data['model_name']} ### Citation ``` @software{{chimera2025, title={{CHIMERA: All-in-One GPU Neuromorphic Architecture}}, author={{Angulo de Lafuente, Francisco}}, year={{2025}}, url={{https://github.com/Agnuxo1/CHIMERA-Revolutionary-AI-Architecture}} }} ``` """) if __name__ == "__main__": demo.launch()