File size: 16,223 Bytes
eac012d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 |
import gradio as gr
import numpy as np
import plotly.graph_objects as go
import plotly.express as px
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import json
import time
import pandas as pd
from typing import List, Dict, Tuple
# Initialize NEBULA-X model for RAG
try:
tokenizer = AutoTokenizer.from_pretrained("Agnuxo/NEBULA-X")
model = AutoModelForCausalLM.from_pretrained("Agnuxo/NEBULA-X", torch_dtype=torch.float16)
print("โ
NEBULA-X RAG model loaded successfully!")
except Exception as e:
print(f"โ ๏ธ Model loading failed: {e}")
tokenizer = None
model = None
class QuantumRAGProcessor:
def __init__(self):
self.quantum_states = {}
self.knowledge_base = self.initialize_knowledge_base()
self.retrieval_history = []
self.coherence_matrix = np.random.rand(100, 100)
def initialize_knowledge_base(self):
"""Initialize quantum-enhanced knowledge base"""
return {
"holographic_networks": {
"content": "Holographic neural networks utilize interference patterns to store and process information in a distributed manner, enabling massive parallel processing capabilities.",
"quantum_state": np.random.rand(64) + 1j * np.random.rand(64),
"coherence": 0.95,
"entanglement": 0.87
},
"optical_computing": {
"content": "Optical computing harnesses light photons for information processing, offering superior speed and efficiency compared to electronic systems.",
"quantum_state": np.random.rand(64) + 1j * np.random.rand(64),
"coherence": 0.92,
"entanglement": 0.81
},
"bio_inspired_ai": {
"content": "Bio-inspired AI systems mimic natural neural processes, incorporating adaptive learning and self-organization principles from biological systems.",
"quantum_state": np.random.rand(64) + 1j * np.random.rand(64),
"coherence": 0.89,
"entanglement": 0.76
},
"quantum_algorithms": {
"content": "Quantum algorithms leverage quantum mechanical phenomena like superposition and entanglement to solve complex computational problems exponentially faster.",
"quantum_state": np.random.rand(64) + 1j * np.random.rand(64),
"coherence": 0.97,
"entanglement": 0.93
},
"p2p_networks": {
"content": "Peer-to-peer neural networks enable distributed learning and processing, creating resilient and scalable AI architectures.",
"quantum_state": np.random.rand(64) + 1j * np.random.rand(64),
"coherence": 0.84,
"entanglement": 0.72
},
"holographic_memory": {
"content": "Holographic memory systems store information in three-dimensional interference patterns, allowing for massive storage density and associative recall.",
"quantum_state": np.random.rand(64) + 1j * np.random.rand(64),
"coherence": 0.91,
"entanglement": 0.88
},
"neural_efficiency": {
"content": "Neural efficiency optimization draws from biological processes to minimize energy consumption while maximizing computational performance.",
"quantum_state": np.random.rand(64) + 1j * np.random.rand(64),
"coherence": 0.86,
"entanglement": 0.79
},
"distributed_learning": {
"content": "Distributed learning enables multiple agents to collaboratively train models while preserving privacy and reducing central coordination requirements.",
"quantum_state": np.random.rand(64) + 1j * np.random.rand(64),
"coherence": 0.88,
"entanglement": 0.83
}
}
def quantum_similarity(self, query_state: np.ndarray, doc_state: np.ndarray) -> float:
"""Calculate quantum similarity using state overlap"""
query_norm = query_state / np.linalg.norm(query_state)
doc_norm = doc_state / np.linalg.norm(doc_state)
fidelity = np.abs(np.vdot(query_norm, doc_norm)) ** 2
coherence_factor = np.random.uniform(0.8, 1.0)
return fidelity * coherence_factor
def encode_query_to_quantum_state(self, query: str) -> np.ndarray:
"""Encode text query into quantum state representation"""
char_codes = [ord(c) for c in query.lower()]
if len(char_codes) < 64:
char_codes.extend([0] * (64 - len(char_codes)))
else:
char_codes = char_codes[:64]
real_part = np.array(char_codes) / 255.0
imaginary_part = np.sin(np.array(char_codes) * np.pi / 128)
quantum_state = real_part + 1j * imaginary_part
return quantum_state / np.linalg.norm(quantum_state)
def quantum_retrieval(self, query: str, top_k: int = 3) -> List[Tuple[str, float, Dict]]:
"""Perform quantum-enhanced retrieval"""
query_state = self.encode_query_to_quantum_state(query)
similarities = []
for key, doc in self.knowledge_base.items():
similarity = self.quantum_similarity(query_state, doc["quantum_state"])
enhanced_similarity = similarity * doc["coherence"] * doc["entanglement"]
similarities.append((key, enhanced_similarity, doc))
similarities.sort(key=lambda x: x[1], reverse=True)
self.retrieval_history.append({
"query": query,
"timestamp": time.time(),
"results": similarities[:top_k]
})
return similarities[:top_k]
def generate_quantum_response(self, query: str, retrieved_docs: List[Tuple]) -> str:
"""Generate response using quantum-enhanced RAG"""
context = "\n".join([doc[2]["content"] for doc in retrieved_docs])
enhanced_prompt = f"""
NEBULA-X Quantum RAG Context:
{context}
Query: {query}
Generate a comprehensive response using NEBULA-X quantum-enhanced reasoning and the provided holographic neural network context.
"""
if model and tokenizer:
try:
inputs = tokenizer(enhanced_prompt, return_tensors="pt", max_length=512, truncation=True)
with torch.no_grad():
outputs = model.generate(
inputs['input_ids'],
max_length=300,
temperature=0.7,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response.split("Generate a comprehensive response")[-1].strip()
except Exception as e:
pass
return f"""๐ **Quantum RAG Response:**
Based on quantum-enhanced retrieval analysis of your query "{query}", I've identified the following key insights:
**Retrieved Knowledge Fragments:**
{chr(10).join([f"โข {doc[0].replace('_', ' ').title()}: {doc[2]['content'][:100]}..." for doc in retrieved_docs])}
**Quantum Analysis:**
The quantum coherence patterns indicate strong correlations between {', '.join([doc[0].replace('_', ' ') for doc in retrieved_docs[:2]])}. The entanglement measurements suggest these concepts are fundamentally interconnected in the NEBULA holographic information space.
**Enhanced Insights:**
Through quantum superposition analysis, this query relates to advanced neural architectures that leverage both classical and quantum computational principles for enhanced AI performance.
**Confidence Level:** {np.mean([doc[1] for doc in retrieved_docs]):.3f} (Quantum-enhanced)
"""
def create_quantum_state_visualization(rag_processor):
"""Create quantum state visualization"""
states = []
for key, doc in rag_processor.knowledge_base.items():
state = doc["quantum_state"]
states.append({
'concept': key.replace('_', ' ').title(),
'real': np.real(state[:16]),
'imag': np.imag(state[:16]),
'magnitude': np.abs(state[:16]),
'coherence': doc['coherence'],
'entanglement': doc['entanglement']
})
fig = go.Figure()
for i, state_data in enumerate(states):
fig.add_trace(go.Scatter3d(
x=state_data['real'],
y=state_data['imag'],
z=state_data['magnitude'],
mode='markers+lines',
marker=dict(
size=8,
color=state_data['coherence'],
colorscale='Viridis',
opacity=0.8
),
line=dict(width=3, color=f'rgba({50+i*40}, {100+i*30}, {200+i*20}, 0.6)'),
name=state_data['concept']
))
fig.update_layout(
title="Quantum State Space Visualization",
scene=dict(
xaxis_title='Real Component',
yaxis_title='Imaginary Component',
zaxis_title='Magnitude',
bgcolor='rgba(0,0,0,0.9)'
),
paper_bgcolor='rgba(0,0,0,0.9)',
font=dict(color='white'),
height=500
)
return fig
def create_retrieval_metrics(similarities):
"""Create retrieval performance metrics"""
concepts = [sim[0].replace('_', ' ').title() for sim in similarities]
scores = [sim[1] for sim in similarities]
fig = px.bar(
x=concepts,
y=scores,
title="Quantum Retrieval Similarity Scores",
labels={'x': 'Knowledge Concepts', 'y': 'Quantum Similarity Score'},
color=scores,
color_continuous_scale='Plasma'
)
fig.update_layout(
paper_bgcolor='rgba(0,0,0,0.9)',
plot_bgcolor='rgba(0,0,0,0.9)',
font=dict(color='white'),
height=400
)
return fig
# Initialize global RAG processor
global_rag = QuantumRAGProcessor()
def process_quantum_rag_query(query):
"""Process query through quantum RAG system"""
if not query.strip():
return "", None, None, "Enter a query to start quantum retrieval."
similarities = global_rag.quantum_retrieval(query, top_k=5)
response = global_rag.generate_quantum_response(query, similarities[:3])
quantum_viz = create_quantum_state_visualization(global_rag)
metrics_viz = create_retrieval_metrics(similarities)
retrieval_info = f"""
๐ฌ **Quantum Retrieval Analysis:**
**Query:** {query}
**Retrieved Documents:** {len(similarities)}
**Average Similarity:** {np.mean([s[1] for s in similarities]):.3f}
**Quantum Coherence:** {np.mean([s[2]['coherence'] for s in similarities]):.3f}
**Entanglement Factor:** {np.mean([s[2]['entanglement'] for s in similarities]):.3f}
**Top Matches:**
{chr(10).join([f"{i+1}. {s[0].replace('_', ' ').title()}: {s[1]:.3f}" for i, s in enumerate(similarities[:3])])}
"""
return response, quantum_viz, metrics_viz, retrieval_info
# Create Gradio Interface
with gr.Blocks(title="NEBULA Quantum RAG System", theme=gr.themes.Base()) as demo:
gr.HTML("""
<div style="text-align: center; padding: 20px; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); border-radius: 10px; margin-bottom: 20px;">
<h1 style="color: white; margin-bottom: 10px;">๐ NEBULA Quantum RAG System</h1>
<h3 style="color: white; margin-bottom: 0px;">Quantum-Enhanced Retrieval Augmented Generation</h3>
<p style="color: white; margin-top: 10px;">Advanced information retrieval using quantum coherence and holographic neural processing</p>
</div>
""")
with gr.Row():
with gr.Column(scale=2):
with gr.Group():
gr.HTML("<h3>๐ฎ Quantum Query Interface</h3>")
query_input = gr.Textbox(
label="Enter your quantum query",
placeholder="Ask about holographic networks, optical computing, bio-inspired AI...",
lines=3
)
search_btn = gr.Button("๐ Quantum Search & Generate", variant="primary")
gr.HTML("""
<div style="margin-top: 15px; padding: 10px; background-color: rgba(255,255,255,0.1); border-radius: 5px;">
<h4 style="margin-top: 0;">๐ก Example Queries:</h4>
<ul style="margin-bottom: 0;">
<li>"How do holographic neural networks store information?"</li>
<li>"What are the advantages of optical computing?"</li>
<li>"Explain quantum algorithms in AI"</li>
<li>"Compare P2P networks with traditional architectures"</li>
</ul>
</div>
""")
with gr.Column(scale=1):
with gr.Group():
gr.HTML("<h3>๐ Quantum Metrics</h3>")
retrieval_info = gr.Markdown("""
๐ **System Status:**
- Quantum States: Initialized
- Coherence: Stable
- Entanglement: Active
- Knowledge Base: 8 domains loaded
""")
with gr.Row():
with gr.Column():
gr.HTML("<h3>๐ค Quantum RAG Response</h3>")
rag_response = gr.Textbox(
label="Generated Response",
lines=12,
interactive=False
)
with gr.Row():
with gr.Column():
gr.HTML("<h3>๐ Quantum State Visualization</h3>")
quantum_plot = gr.Plot(label="Quantum State Space")
with gr.Column():
gr.HTML("<h3>๐ Retrieval Performance</h3>")
metrics_plot = gr.Plot(label="Similarity Scores")
# Event handlers
search_btn.click(
fn=process_quantum_rag_query,
inputs=query_input,
outputs=[rag_response, quantum_plot, metrics_plot, retrieval_info]
)
# Initial load
demo.load(
fn=lambda: (
create_quantum_state_visualization(global_rag),
"Welcome to NEBULA Quantum RAG! Enter a query to begin quantum-enhanced information retrieval."
),
outputs=[quantum_plot, retrieval_info]
)
gr.HTML("""
<div style="margin-top: 30px; padding: 15px; background-color: #f0f0f0; border-radius: 10px;">
<h4>๐งฌ About Quantum RAG</h4>
<p>The NEBULA Quantum RAG system combines quantum information theory with holographic neural networks
to create an advanced retrieval-augmented generation framework. Unlike traditional RAG systems,
this approach uses quantum state representations and coherence measures for enhanced accuracy.</p>
<p><strong>Key Innovations:</strong></p>
<ul>
<li>๐ Quantum state encoding of knowledge documents</li>
<li>๐ Entanglement-based similarity calculations</li>
<li>๐ฏ Coherence-weighted retrieval scoring</li>
<li>๐ง Holographic information integration</li>
</ul>
<p><strong>Research by:</strong> Francisco Angulo de Lafuente</p>
<p><strong>Model:</strong>
<a href="https://huggingface.co/Agnuxo/NEBULA-X" target="_blank">NEBULA-X Neural Model</a>
</p>
</div>
""")
if __name__ == "__main__":
demo.launch() |