Spaces:
Configuration error
Configuration error
| import glob | |
| import json | |
| import logging | |
| import os | |
| from dataclasses import dataclass, field | |
| from functools import partial | |
| from typing import Dict, List, Optional, Union, Literal, Tuple | |
| from types import MethodType | |
| import torch | |
| import transformers | |
| from accelerate.utils import DistributedType | |
| from deepspeed import zero | |
| from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus | |
| from transformers import AutoModel, AutoTokenizer | |
| from transformers.integrations import deepspeed | |
| from transformers import AutoModel, AutoTokenizer | |
| from dataset import SupervisedDataset, data_collator | |
| from trainer import CPMTrainer | |
| from peft import LoraConfig, get_peft_model | |
| class ModelArguments: | |
| model_name_or_path: Optional[str] = field(default="openbmb/MiniCPM-V-2") | |
| class DataArguments: | |
| data_path: str = field( | |
| default=None, metadata={"help": "Path to the training data."} | |
| ) | |
| eval_data_path: str = field( | |
| default=None, metadata={"help": "Path to the evaluation data."} | |
| ) | |
| class TrainingArguments(transformers.TrainingArguments): | |
| cache_dir: Optional[str] = field(default=None) | |
| optim: str = field(default="adamw_torch") | |
| model_max_length: int = field( | |
| default=2048, | |
| metadata={ | |
| "help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)." | |
| }, | |
| ) | |
| tune_vision: Optional[bool] = field(default=True) | |
| tune_llm: Optional[bool] = field(default=False) | |
| llm_type: str = field(default="minicpm") | |
| use_lora: Optional[bool] = field(default=False) | |
| class LoraArguments: | |
| lora_r: int = 64 | |
| lora_alpha: int = 64 | |
| lora_dropout: float = 0.05 | |
| lora_target_modules: str = r"llm\..*layers\.\d+\.self_attn\.(q_proj|k_proj|v_proj)" | |
| lora_weight_path: str = "" | |
| lora_bias: str = "none" | |
| q_lora: bool = False | |
| lora_modules_to_save: str = "" | |
| lora_layer_replication: Optional[List[Tuple[int, int]]] = None | |
| lora_layers_to_transform: Optional[List[int]] = None | |
| lora_layers_pattern: Optional[str] = None | |
| def maybe_zero_3(param): | |
| if hasattr(param, "ds_id"): | |
| assert param.ds_status == ZeroParamStatus.NOT_AVAILABLE | |
| with zero.GatheredParameters([param]): | |
| param = param.data.detach().cpu().clone() | |
| else: | |
| param = param.detach().cpu().clone() | |
| return param | |
| # Borrowed from peft.utils.get_peft_model_state_dict | |
| def get_peft_state_maybe_zero_3(named_params, bias): | |
| if bias == "none": | |
| to_return = {k: t for k, t in named_params if "lora_" in k} | |
| elif bias == "all": | |
| to_return = {k: t for k, t in named_params if "lora_" in k or "bias" in k} | |
| elif bias == "lora_only": | |
| to_return = {} | |
| maybe_lora_bias = {} | |
| lora_bias_names = set() | |
| for k, t in named_params: | |
| if "lora_" in k: | |
| to_return[k] = t | |
| bias_name = k.split("lora_")[0] + "bias" | |
| lora_bias_names.add(bias_name) | |
| elif "bias" in k: | |
| maybe_lora_bias[k] = t | |
| for k, t in maybe_lora_bias: | |
| if bias_name in lora_bias_names: | |
| to_return[bias_name] = t | |
| else: | |
| raise NotImplementedError | |
| to_return = {k: maybe_zero_3(v) for k, v in to_return.items()} | |
| return to_return | |
| local_rank = None | |
| def rank0_print(*args): | |
| if local_rank == 0: | |
| print(*args) | |
| def safe_save_model_for_hf_trainer(trainer, output_dir: str, bias="none"): | |
| """Collects the state dict and dump to disk.""" | |
| # check if zero3 mode enabled | |
| if deepspeed.is_deepspeed_zero3_enabled(): | |
| state_dict = trainer.model_wrapped._zero3_consolidated_16bit_state_dict() | |
| else: | |
| if trainer.args.use_lora: | |
| state_dict = get_peft_state_maybe_zero_3( | |
| trainer.model.named_parameters(), bias | |
| ) | |
| else: | |
| state_dict = trainer.model.state_dict() | |
| if trainer.args.should_save and trainer.args.local_rank == 0: | |
| trainer._save(output_dir, state_dict=state_dict) | |
| def make_supervised_data_module( | |
| tokenizer: transformers.PreTrainedTokenizer, | |
| data_args, | |
| transform, | |
| data_collator=None, | |
| llm_type="minicpm", | |
| slice_config=None, | |
| patch_size=14, | |
| query_nums=64, | |
| batch_vision=False, | |
| max_length=2048, | |
| ) -> Dict: | |
| """Make dataset and collator for supervised fine-tuning.""" | |
| dataset_cls = SupervisedDataset | |
| rank0_print("Loading data...") | |
| train_json = json.load(open(data_args.data_path, "r")) | |
| train_dataset = dataset_cls( | |
| train_json, | |
| transform, | |
| tokenizer, | |
| slice_config=slice_config, | |
| llm_type=llm_type, | |
| patch_size=patch_size, | |
| query_nums=query_nums, | |
| batch_vision=batch_vision, | |
| ) | |
| if data_args.eval_data_path: | |
| eval_json = json.load(open(data_args.eval_data_path, "r")) | |
| eval_dataset = dataset_cls( | |
| eval_json, | |
| transform, | |
| tokenizer, | |
| slice_config=slice_config, | |
| llm_type=llm_type, | |
| patch_size=patch_size, | |
| query_nums=query_nums, | |
| batch_vision=batch_vision, | |
| ) | |
| else: | |
| eval_dataset = None | |
| return dict( | |
| train_dataset=train_dataset, | |
| eval_dataset=eval_dataset, | |
| data_collator= partial(data_collator, max_length=max_length), | |
| ) | |
| def get_parameter_number(model): | |
| trainable_params, all_param = 0, 0 | |
| for param in model.parameters(): | |
| num_params = param.numel() | |
| # if using DS Zero 3 and the weights are initialized empty | |
| if num_params == 0 and hasattr(param, "ds_numel"): | |
| num_params = param.ds_numel | |
| all_param += num_params | |
| if param.requires_grad: | |
| trainable_params += num_params | |
| return {'Total': all_param, 'Trainable': trainable_params} | |
| local_rank = 0 | |
| def train(): | |
| global local_rank | |
| parser = transformers.HfArgumentParser( | |
| (ModelArguments, DataArguments, TrainingArguments, LoraArguments) | |
| ) | |
| ( | |
| model_args, | |
| data_args, | |
| training_args, | |
| lora_args, | |
| ) = parser.parse_args_into_dataclasses() | |
| if getattr(training_args, "deepspeed", None) : | |
| training_args.distributed_state.distributed_type = DistributedType.DEEPSPEED | |
| compute_dtype = ( | |
| torch.float16 | |
| if training_args.fp16 | |
| else (torch.bfloat16 if training_args.bf16 else torch.float32) | |
| ) | |
| local_rank = training_args.local_rank | |
| world_size = int(os.environ.get("WORLD_SIZE", 1)) | |
| ddp = world_size != 1 | |
| device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)} if ddp else None | |
| model = AutoModel.from_pretrained( | |
| model_args.model_name_or_path, | |
| trust_remote_code=True, | |
| torch_dtype=compute_dtype, | |
| device_map=device_map, | |
| ) | |
| tokenizer = AutoTokenizer.from_pretrained( | |
| model_args.model_name_or_path, trust_remote_code=True | |
| ) | |
| if not training_args.tune_vision: | |
| model.vpm.requires_grad_(False) | |
| if not training_args.tune_llm: | |
| model.llm.requires_grad_(False) | |
| if training_args.use_lora: | |
| if training_args.use_lora and training_args.tune_llm: | |
| raise ValueError("The model cannot simultaneously adjust LLM parameters and apply LoRA.") | |
| rank0_print("Currently using LoRA for fine-tuning the MiniCPM-V model.") | |
| for name, param in model.llm.named_parameters(): | |
| param.requires_grad = False | |
| lora_config = LoraConfig( | |
| r=lora_args.lora_r, | |
| lora_alpha=lora_args.lora_alpha, | |
| target_modules=lora_args.lora_target_modules, | |
| lora_dropout=lora_args.lora_dropout, | |
| bias=lora_args.lora_bias, | |
| layers_to_transform=lora_args.lora_layers_to_transform, | |
| task_type="CAUSAL_LM", | |
| ) | |
| if training_args.gradient_checkpointing: | |
| def get_input_embeddings(self): | |
| return self.llm.get_input_embeddings() | |
| model.get_input_embeddings = MethodType(get_input_embeddings, model) | |
| model = get_peft_model(model, lora_config) | |
| model.base_model.llm.model.embed_tokens.weight.requires_grad_(True) | |
| if training_args.gradient_checkpointing: | |
| model.enable_input_require_grads() | |
| rank0_print(get_parameter_number(model)) | |
| llm_type = training_args.llm_type | |
| if llm_type == "llama3": | |
| tokenizer.chat_template = "{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}" | |
| rank0_print(f'llm_type={llm_type}') | |
| # Load data | |
| if hasattr(model.config, "slice_config"): | |
| slice_config = model.config.slice_config.to_dict() | |
| else: | |
| slice_config = model.config.to_dict() | |
| if hasattr(model.config, "batch_vision_input"): | |
| batch_vision = model.config.batch_vision_input | |
| else: | |
| batch_vision = False | |
| data_module = make_supervised_data_module( | |
| tokenizer=tokenizer, | |
| data_args=data_args, | |
| transform=model.transform, | |
| data_collator=data_collator, | |
| slice_config=slice_config, | |
| llm_type=llm_type, | |
| patch_size=model.config.patch_size, | |
| query_nums=model.config.query_num, | |
| batch_vision=batch_vision, | |
| max_length=training_args.model_max_length, | |
| ) | |
| trainer = CPMTrainer( | |
| model=model, | |
| tokenizer=tokenizer, | |
| args=training_args, | |
| **data_module, | |
| ) | |
| trainer.train() | |
| trainer.save_state() | |
| safe_save_model_for_hf_trainer( | |
| trainer=trainer, | |
| output_dir=training_args.output_dir, | |
| bias=lora_args.lora_bias) | |
| if __name__ == "__main__": | |
| train() | |