Spaces:
Configuration error
Configuration error
| from torchvision import transforms | |
| from timm.data.transforms import RandomResizedCropAndInterpolation | |
| from timm.data.constants import IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD | |
| from transformers import AutoConfig | |
| from PIL import Image | |
| from io import BytesIO | |
| import torch.distributed as dist | |
| import numpy as np | |
| import pickle | |
| import base64 | |
| import cv2 | |
| import os | |
| import torch | |
| from transformers import AutoConfig, StoppingCriteria | |
| try: | |
| from timm.data.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD | |
| except ImportError: | |
| OPENAI_CLIP_MEAN = (0.48145466, 0.4578275, 0.40821073) | |
| OPENAI_CLIP_STD = (0.26862954, 0.26130258, 0.27577711) | |
| def auto_upgrade(config): | |
| cfg = AutoConfig.from_pretrained(config) | |
| if 'llava' in config and cfg.model_type != 'llava': | |
| print("You are using newer LLaVA code base, while the checkpoint of v0 is from older code base.") | |
| print("You must upgrade the checkpoint to the new code base (this can be done automatically).") | |
| confirm = input( | |
| "Please confirm that you want to upgrade the checkpoint. [Y/N]") | |
| if confirm.lower() in ["y", "yes"]: | |
| print("Upgrading checkpoint...") | |
| assert len(cfg.architectures) == 1 | |
| setattr(cfg.__class__, "model_type", "llava") | |
| cfg.architectures[0] = 'LlavaLlamaForCausalLM' | |
| cfg.save_pretrained(config) | |
| print("Checkpoint upgraded.") | |
| else: | |
| print("Checkpoint upgrade aborted.") | |
| exit(1) | |
| class KeywordsStoppingCriteria(StoppingCriteria): | |
| def __init__(self, keywords, tokenizer, input_ids): | |
| self.keywords = keywords | |
| self.tokenizer = tokenizer | |
| self.start_len = None | |
| self.input_ids = input_ids | |
| def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: | |
| if self.start_len is None: | |
| self.start_len = self.input_ids.shape[1] | |
| else: | |
| outputs = self.tokenizer.batch_decode( | |
| output_ids[:, self.start_len:], skip_special_tokens=True)[0] | |
| for keyword in self.keywords: | |
| if keyword in outputs: | |
| return True | |
| return False | |
| def auto_upgrade(config): | |
| cfg = AutoConfig.from_pretrained(config) | |
| if 'llava' in config and cfg.model_type != 'llava': | |
| print("You are using newer LLaVA code base, while the checkpoint of v0 is from older code base.") | |
| print("You must upgrade the checkpoint to the new code base (this can be done automatically).") | |
| confirm = input( | |
| "Please confirm that you want to upgrade the checkpoint. [Y/N]") | |
| if confirm.lower() in ["y", "yes"]: | |
| print("Upgrading checkpoint...") | |
| assert len(cfg.architectures) == 1 | |
| setattr(cfg.__class__, "model_type", "llava") | |
| cfg.architectures[0] = 'LlavaLlamaForCausalLM' | |
| cfg.save_pretrained(config) | |
| print("Checkpoint upgraded.") | |
| else: | |
| print("Checkpoint upgrade aborted.") | |
| exit(1) | |
| # aug functions | |
| def identity_func(img): | |
| return img | |
| def autocontrast_func(img, cutoff=0): | |
| ''' | |
| same output as PIL.ImageOps.autocontrast | |
| ''' | |
| n_bins = 256 | |
| def tune_channel(ch): | |
| n = ch.size | |
| cut = cutoff * n // 100 | |
| if cut == 0: | |
| high, low = ch.max(), ch.min() | |
| else: | |
| hist = cv2.calcHist([ch], [0], None, [n_bins], [0, n_bins]) | |
| low = np.argwhere(np.cumsum(hist) > cut) | |
| low = 0 if low.shape[0] == 0 else low[0] | |
| high = np.argwhere(np.cumsum(hist[::-1]) > cut) | |
| high = n_bins - 1 if high.shape[0] == 0 else n_bins - 1 - high[0] | |
| if high <= low: | |
| table = np.arange(n_bins) | |
| else: | |
| scale = (n_bins - 1) / (high - low) | |
| table = np.arange(n_bins) * scale - low * scale | |
| table[table < 0] = 0 | |
| table[table > n_bins - 1] = n_bins - 1 | |
| table = table.clip(0, 255).astype(np.uint8) | |
| return table[ch] | |
| channels = [tune_channel(ch) for ch in cv2.split(img)] | |
| out = cv2.merge(channels) | |
| return out | |
| def equalize_func(img): | |
| ''' | |
| same output as PIL.ImageOps.equalize | |
| PIL's implementation is different from cv2.equalize | |
| ''' | |
| n_bins = 256 | |
| def tune_channel(ch): | |
| hist = cv2.calcHist([ch], [0], None, [n_bins], [0, n_bins]) | |
| non_zero_hist = hist[hist != 0].reshape(-1) | |
| step = np.sum(non_zero_hist[:-1]) // (n_bins - 1) | |
| if step == 0: | |
| return ch | |
| n = np.empty_like(hist) | |
| n[0] = step // 2 | |
| n[1:] = hist[:-1] | |
| table = (np.cumsum(n) // step).clip(0, 255).astype(np.uint8) | |
| return table[ch] | |
| channels = [tune_channel(ch) for ch in cv2.split(img)] | |
| out = cv2.merge(channels) | |
| return out | |
| def rotate_func(img, degree, fill=(0, 0, 0)): | |
| ''' | |
| like PIL, rotate by degree, not radians | |
| ''' | |
| H, W = img.shape[0], img.shape[1] | |
| center = W / 2, H / 2 | |
| M = cv2.getRotationMatrix2D(center, degree, 1) | |
| out = cv2.warpAffine(img, M, (W, H), borderValue=fill) | |
| return out | |
| def solarize_func(img, thresh=128): | |
| ''' | |
| same output as PIL.ImageOps.posterize | |
| ''' | |
| table = np.array([el if el < thresh else 255 - el for el in range(256)]) | |
| table = table.clip(0, 255).astype(np.uint8) | |
| out = table[img] | |
| return out | |
| def color_func(img, factor): | |
| ''' | |
| same output as PIL.ImageEnhance.Color | |
| ''' | |
| # implementation according to PIL definition, quite slow | |
| # degenerate = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)[:, :, np.newaxis] | |
| # out = blend(degenerate, img, factor) | |
| # M = ( | |
| # np.eye(3) * factor | |
| # + np.float32([0.114, 0.587, 0.299]).reshape(3, 1) * (1. - factor) | |
| # )[np.newaxis, np.newaxis, :] | |
| M = ( | |
| np.float32([ | |
| [0.886, -0.114, -0.114], | |
| [-0.587, 0.413, -0.587], | |
| [-0.299, -0.299, 0.701]]) * factor | |
| + np.float32([[0.114], [0.587], [0.299]]) | |
| ) | |
| out = np.matmul(img, M).clip(0, 255).astype(np.uint8) | |
| return out | |
| def contrast_func(img, factor): | |
| """ | |
| same output as PIL.ImageEnhance.Contrast | |
| """ | |
| mean = np.sum(np.mean(img, axis=(0, 1)) * np.array([0.114, 0.587, 0.299])) | |
| table = np.array([( | |
| el - mean) * factor + mean | |
| for el in range(256) | |
| ]).clip(0, 255).astype(np.uint8) | |
| out = table[img] | |
| return out | |
| def brightness_func(img, factor): | |
| ''' | |
| same output as PIL.ImageEnhance.Contrast | |
| ''' | |
| table = (np.arange(256, dtype=np.float32) * | |
| factor).clip(0, 255).astype(np.uint8) | |
| out = table[img] | |
| return out | |
| def sharpness_func(img, factor): | |
| ''' | |
| The differences the this result and PIL are all on the 4 boundaries, the center | |
| areas are same | |
| ''' | |
| kernel = np.ones((3, 3), dtype=np.float32) | |
| kernel[1][1] = 5 | |
| kernel /= 13 | |
| degenerate = cv2.filter2D(img, -1, kernel) | |
| if factor == 0.0: | |
| out = degenerate | |
| elif factor == 1.0: | |
| out = img | |
| else: | |
| out = img.astype(np.float32) | |
| degenerate = degenerate.astype(np.float32)[1:-1, 1:-1, :] | |
| out[1:-1, 1:-1, :] = degenerate + factor * \ | |
| (out[1:-1, 1:-1, :] - degenerate) | |
| out = out.astype(np.uint8) | |
| return out | |
| def shear_x_func(img, factor, fill=(0, 0, 0)): | |
| H, W = img.shape[0], img.shape[1] | |
| M = np.float32([[1, factor, 0], [0, 1, 0]]) | |
| out = cv2.warpAffine(img, M, (W, H), borderValue=fill, | |
| flags=cv2.INTER_LINEAR).astype(np.uint8) | |
| return out | |
| def translate_x_func(img, offset, fill=(0, 0, 0)): | |
| ''' | |
| same output as PIL.Image.transform | |
| ''' | |
| H, W = img.shape[0], img.shape[1] | |
| M = np.float32([[1, 0, -offset], [0, 1, 0]]) | |
| out = cv2.warpAffine(img, M, (W, H), borderValue=fill, | |
| flags=cv2.INTER_LINEAR).astype(np.uint8) | |
| return out | |
| def translate_y_func(img, offset, fill=(0, 0, 0)): | |
| ''' | |
| same output as PIL.Image.transform | |
| ''' | |
| H, W = img.shape[0], img.shape[1] | |
| M = np.float32([[1, 0, 0], [0, 1, -offset]]) | |
| out = cv2.warpAffine(img, M, (W, H), borderValue=fill, | |
| flags=cv2.INTER_LINEAR).astype(np.uint8) | |
| return out | |
| def posterize_func(img, bits): | |
| ''' | |
| same output as PIL.ImageOps.posterize | |
| ''' | |
| out = np.bitwise_and(img, np.uint8(255 << (8 - bits))) | |
| return out | |
| def shear_y_func(img, factor, fill=(0, 0, 0)): | |
| H, W = img.shape[0], img.shape[1] | |
| M = np.float32([[1, 0, 0], [factor, 1, 0]]) | |
| out = cv2.warpAffine(img, M, (W, H), borderValue=fill, | |
| flags=cv2.INTER_LINEAR).astype(np.uint8) | |
| return out | |
| def cutout_func(img, pad_size, replace=(0, 0, 0)): | |
| replace = np.array(replace, dtype=np.uint8) | |
| H, W = img.shape[0], img.shape[1] | |
| rh, rw = np.random.random(2) | |
| pad_size = pad_size // 2 | |
| ch, cw = int(rh * H), int(rw * W) | |
| x1, x2 = max(ch - pad_size, 0), min(ch + pad_size, H) | |
| y1, y2 = max(cw - pad_size, 0), min(cw + pad_size, W) | |
| out = img.copy() | |
| out[x1:x2, y1:y2, :] = replace | |
| return out | |
| # level to args | |
| def enhance_level_to_args(MAX_LEVEL): | |
| def level_to_args(level): | |
| return ((level / MAX_LEVEL) * 1.8 + 0.1,) | |
| return level_to_args | |
| def shear_level_to_args(MAX_LEVEL, replace_value): | |
| def level_to_args(level): | |
| level = (level / MAX_LEVEL) * 0.3 | |
| if np.random.random() > 0.5: | |
| level = -level | |
| return (level, replace_value) | |
| return level_to_args | |
| def translate_level_to_args(translate_const, MAX_LEVEL, replace_value): | |
| def level_to_args(level): | |
| level = (level / MAX_LEVEL) * float(translate_const) | |
| if np.random.random() > 0.5: | |
| level = -level | |
| return (level, replace_value) | |
| return level_to_args | |
| def cutout_level_to_args(cutout_const, MAX_LEVEL, replace_value): | |
| def level_to_args(level): | |
| level = int((level / MAX_LEVEL) * cutout_const) | |
| return (level, replace_value) | |
| return level_to_args | |
| def solarize_level_to_args(MAX_LEVEL): | |
| def level_to_args(level): | |
| level = int((level / MAX_LEVEL) * 256) | |
| return (level, ) | |
| return level_to_args | |
| def none_level_to_args(level): | |
| return () | |
| def posterize_level_to_args(MAX_LEVEL): | |
| def level_to_args(level): | |
| level = int((level / MAX_LEVEL) * 4) | |
| return (level, ) | |
| return level_to_args | |
| def rotate_level_to_args(MAX_LEVEL, replace_value): | |
| def level_to_args(level): | |
| level = (level / MAX_LEVEL) * 30 | |
| if np.random.random() < 0.5: | |
| level = -level | |
| return (level, replace_value) | |
| return level_to_args | |
| func_dict = { | |
| 'Identity': identity_func, | |
| 'AutoContrast': autocontrast_func, | |
| 'Equalize': equalize_func, | |
| 'Rotate': rotate_func, | |
| 'Solarize': solarize_func, | |
| 'Color': color_func, | |
| 'Contrast': contrast_func, | |
| 'Brightness': brightness_func, | |
| 'Sharpness': sharpness_func, | |
| 'ShearX': shear_x_func, | |
| 'TranslateX': translate_x_func, | |
| 'TranslateY': translate_y_func, | |
| 'Posterize': posterize_func, | |
| 'ShearY': shear_y_func, | |
| } | |
| translate_const = 10 | |
| MAX_LEVEL = 10 | |
| replace_value = (128, 128, 128) | |
| arg_dict = { | |
| 'Identity': none_level_to_args, | |
| 'AutoContrast': none_level_to_args, | |
| 'Equalize': none_level_to_args, | |
| 'Rotate': rotate_level_to_args(MAX_LEVEL, replace_value), | |
| 'Solarize': solarize_level_to_args(MAX_LEVEL), | |
| 'Color': enhance_level_to_args(MAX_LEVEL), | |
| 'Contrast': enhance_level_to_args(MAX_LEVEL), | |
| 'Brightness': enhance_level_to_args(MAX_LEVEL), | |
| 'Sharpness': enhance_level_to_args(MAX_LEVEL), | |
| 'ShearX': shear_level_to_args(MAX_LEVEL, replace_value), | |
| 'TranslateX': translate_level_to_args( | |
| translate_const, MAX_LEVEL, replace_value | |
| ), | |
| 'TranslateY': translate_level_to_args( | |
| translate_const, MAX_LEVEL, replace_value | |
| ), | |
| 'Posterize': posterize_level_to_args(MAX_LEVEL), | |
| 'ShearY': shear_level_to_args(MAX_LEVEL, replace_value), | |
| } | |
| class RandomAugment(object): | |
| def __init__(self, N=2, M=10, isPIL=False, augs=[]): | |
| self.N = N | |
| self.M = M | |
| self.isPIL = isPIL | |
| if augs: | |
| self.augs = augs | |
| else: | |
| self.augs = list(arg_dict.keys()) | |
| def get_random_ops(self): | |
| sampled_ops = np.random.choice(self.augs, self.N) | |
| return [(op, 0.5, self.M) for op in sampled_ops] | |
| def __call__(self, img): | |
| if self.isPIL: | |
| img = np.array(img) | |
| ops = self.get_random_ops() | |
| for name, prob, level in ops: | |
| if np.random.random() > prob: | |
| continue | |
| args = arg_dict[name](level) | |
| img = func_dict[name](img, *args) | |
| return img | |
| def build_transform(is_train, randaug=True, input_size=224, interpolation='bicubic', std_mode='IMAGENET_INCEPTION'): | |
| if std_mode == 'IMAGENET_INCEPTION': | |
| mean = IMAGENET_INCEPTION_MEAN | |
| std = IMAGENET_INCEPTION_STD | |
| elif std_mode == 'OPENAI_CLIP': | |
| mean = OPENAI_CLIP_MEAN | |
| std = OPENAI_CLIP_STD | |
| else: | |
| raise NotImplementedError | |
| if is_train: | |
| crop_scale = float(os.environ.get('TRAIN_CROP_SCALE', 0.9999)) | |
| t = [ | |
| RandomResizedCropAndInterpolation( | |
| input_size, scale=(crop_scale, 1.0), interpolation='bicubic'), | |
| # transforms.RandomHorizontalFlip(), | |
| ] | |
| if randaug and os.environ.get('TRAIN_DO_AUG', 'False') == 'True': | |
| print(f'@@@@@ Do random aug during training', flush=True) | |
| t.append( | |
| RandomAugment( | |
| 2, 7, isPIL=True, | |
| augs=[ | |
| 'Identity', 'AutoContrast', 'Equalize', 'Brightness', 'Sharpness', | |
| 'ShearX', 'ShearY', 'TranslateX', 'TranslateY', 'Rotate', | |
| ])) | |
| else: | |
| print(f'@@@@@ Skip random aug during training', flush=True) | |
| t += [ | |
| transforms.ToTensor(), | |
| transforms.Normalize(mean=mean, std=std), | |
| ] | |
| t = transforms.Compose(t) | |
| else: | |
| t = transforms.Compose([ | |
| transforms.Resize((input_size, input_size), | |
| interpolation=transforms.InterpolationMode.BICUBIC), | |
| transforms.ToTensor(), | |
| transforms.Normalize(mean=mean, std=std) | |
| ]) | |
| return t | |
| def img2b64(img_path): | |
| img = Image.open(img_path) # path to file | |
| img_buffer = BytesIO() | |
| img.save(img_buffer, format=img.format) | |
| byte_data = img_buffer.getvalue() | |
| base64_str = base64.b64encode(byte_data) # bytes | |
| base64_str = base64_str.decode("utf-8") # str | |
| return base64_str | |
| def str2b64(str): | |
| return base64.b64encode(str.encode('utf-8')).decode('utf-8') | |
| def b642str(b64): | |
| return base64.b64decode(b64).decode('utf-8') | |
| def is_dist_avail_and_initialized(): | |
| if not dist.is_available(): | |
| return False | |
| if not dist.is_initialized(): | |
| return False | |
| return True | |
| def get_world_size(): | |
| if not is_dist_avail_and_initialized(): | |
| return 1 | |
| return dist.get_world_size() | |
| def get_rank(): | |
| if not is_dist_avail_and_initialized(): | |
| return 0 | |
| return dist.get_rank() | |
| def all_gather(data): | |
| """ | |
| Run all_gather on arbitrary picklable data (not necessarily tensors) | |
| Args: | |
| data: any picklable object | |
| Returns: | |
| list[data]: list of data gathered from each rank | |
| """ | |
| world_size = get_world_size() | |
| if world_size == 1: | |
| return [data] | |
| # serialized to a Tensor | |
| buffer = pickle.dumps(data) | |
| storage = torch.ByteStorage.from_buffer(buffer) | |
| tensor = torch.ByteTensor(storage).to("cuda") | |
| # obtain Tensor size of each rank | |
| local_size = torch.LongTensor([tensor.numel()]).to("cuda") | |
| size_list = [torch.LongTensor([0]).to("cuda") for _ in range(world_size)] | |
| dist.all_gather(size_list, local_size) | |
| size_list = [int(size.item()) for size in size_list] | |
| max_size = max(size_list) | |
| # receiving Tensor from all ranks | |
| # we pad the tensor because torch all_gather does not support | |
| # gathering tensors of different shapes | |
| tensor_list = [] | |
| for _ in size_list: | |
| tensor_list.append(torch.ByteTensor(size=(max_size,)).to("cuda")) | |
| if local_size != max_size: | |
| padding = torch.ByteTensor(size=(max_size - local_size,)).to("cuda") | |
| tensor = torch.cat((tensor, padding), dim=0) | |
| dist.all_gather(tensor_list, tensor) | |
| data_list = [] | |
| for size, tensor in zip(size_list, tensor_list): | |
| buffer = tensor.cpu().numpy().tobytes()[:size] | |
| data_list.append(pickle.loads(buffer)) | |
| return data_list | |
| def mean(lst): | |
| return sum(lst) / len(lst) | |
| def stop_gradient_by_name(name: str): | |
| def apply_fn(module): | |
| if hasattr(module, name): | |
| getattr(module, name).requires_grad_(False) | |
| return apply_fn | |