Spaces:
Sleeping
Sleeping
File size: 32,597 Bytes
3e0fb99 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 |
import gradio as gr
import PyPDF2
import chromadb
from openai import OpenAI
import numpy as np
from typing import List, Dict, Tuple
import json
import io
import os
from datetime import datetime
import pandas as pd
class RAGPipeline:
def __init__(self):
# Initialize local ChromaDB client using new configuration
try:
self.chroma_client = chromadb.PersistentClient(path="./chroma_db")
except Exception as e:
print(f"ChromaDB initialization error: {e}")
self.chroma_client = None
# OpenAI client (will be set through UI)
self.openai_client = None
self.openai_api_key = None
# Collection for storing document chunks
self.collection = None
# Store document metadata and full text
self.document_metadata = {}
self.full_extracted_text = "" # Store full text here
def set_openai_key(self, openai_key: str):
"""Set OpenAI API key and create client"""
self.openai_api_key = openai_key
if openai_key:
self.openai_client = OpenAI(api_key=openai_key)
def get_openai_embedding(self, text: str) -> List[float]:
"""Generate embeddings using OpenAI's text-embedding-ada-002 model"""
if not self.openai_client:
raise ValueError("OpenAI client not initialized")
try:
response = self.openai_client.embeddings.create(
model="text-embedding-ada-002",
input=text
)
return response.data[0].embedding
except Exception as e:
raise Exception(f"OpenAI embedding generation failed: {str(e)}")
def extract_text_from_pdf(self, pdf_file) -> Tuple[str, Dict]:
"""Extract text from uploaded PDF file"""
try:
# Handle different file types from Gradio
if hasattr(pdf_file, 'name'):
# If it's a file path, read the file
with open(pdf_file.name, 'rb') as file:
pdf_content = file.read()
elif isinstance(pdf_file, bytes):
# If it's already bytes
pdf_content = pdf_file
else:
# If it's a file-like object, read it
pdf_content = pdf_file.read() if hasattr(pdf_file, 'read') else pdf_file
# Read PDF file
pdf_reader = PyPDF2.PdfReader(io.BytesIO(pdf_content))
text = ""
page_count = len(pdf_reader.pages)
# Extract text from all pages
for page_num, page in enumerate(pdf_reader.pages):
page_text = page.extract_text()
if page_text.strip(): # Only add non-empty pages
text += f"\n--- Page {page_num + 1} ---\n"
text += page_text + "\n"
# Clean up the text
text = text.strip()
# Store the full text in the pipeline object
self.full_extracted_text = text
print(f"DEBUG: Stored full text length: {len(self.full_extracted_text)}")
# Create extraction metadata
metadata = {
"total_pages": page_count,
"total_characters": len(text),
"extraction_timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"file_size_bytes": len(pdf_content),
"pages_with_text": sum(1 for page in pdf_reader.pages if page.extract_text().strip()),
"average_chars_per_page": len(text) // page_count if page_count > 0 else 0
}
return text, metadata
except Exception as e:
return f"Error extracting PDF: {str(e)}", {}
def chunk_text(self, text: str, chunk_size: int = 1000, overlap: int = 200) -> Tuple[List[str], Dict]:
"""Split text into overlapping chunks"""
if not text or len(text.strip()) == 0:
return [], {"error": "No text provided for chunking"}
# Clean the text first
text = text.strip()
chunks = []
start = 0
print(f"DEBUG: Starting chunking with text length: {len(text)}")
print(f"DEBUG: Chunk size: {chunk_size}, Overlap: {overlap}")
while start < len(text):
end = start + chunk_size
# If we're not at the end, try to break at a sentence or word boundary
if end < len(text):
# Look for sentence boundary
last_period = text.rfind('.', start, end)
last_newline = text.rfind('\n', start, end)
last_space = text.rfind(' ', start, end)
# Choose the best breaking point
break_point = max(last_period, last_newline, last_space)
if break_point > start:
end = break_point + 1
chunk = text[start:end].strip()
if chunk and len(chunk) > 50: # Only add meaningful chunks
chunks.append(chunk)
print(f"DEBUG: Added chunk {len(chunks)}: length={len(chunk)}")
# Move start position
if end >= len(text):
break
start = end - overlap
# Prevent infinite loop
if start >= end:
start = end
print(f"DEBUG: Final chunks count: {len(chunks)}")
# Create chunking metadata
chunk_lengths = [len(chunk) for chunk in chunks]
metadata = {
"total_chunks": len(chunks),
"chunk_size": chunk_size,
"overlap": overlap,
"avg_chunk_length": np.mean(chunk_lengths) if chunks else 0,
"min_chunk_length": min(chunk_lengths) if chunks else 0,
"max_chunk_length": max(chunk_lengths) if chunks else 0,
"total_text_length": len(text),
"chunking_timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
}
return chunks, metadata
def store_in_chromadb(self, chunks: List[str], document_name: str) -> Dict:
"""Store chunks in ChromaDB with OpenAI embeddings"""
if not self.openai_client:
return {"error": "OpenAI client not initialized for embedding generation"}
try:
# Create or get collection
collection_name = f"financial_docs_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
try:
self.chroma_client.delete_collection(collection_name)
except:
pass
self.collection = self.chroma_client.create_collection(
name=collection_name,
metadata={"hnsw:space": "cosine"}
)
# Generate embeddings for chunks using OpenAI
embeddings = []
embedding_metadata = {
"model_used": "text-embedding-ada-002",
"total_chunks_processed": len(chunks),
"embedding_start_time": datetime.now().isoformat()
}
for i, chunk in enumerate(chunks):
try:
embedding = self.get_openai_embedding(chunk)
embeddings.append(embedding)
except Exception as e:
return {"error": f"Failed to generate embedding for chunk {i}: {str(e)}"}
embedding_metadata["embedding_end_time"] = datetime.now().isoformat()
embedding_metadata["embedding_dimension"] = len(embeddings[0]) if embeddings else 0
# Create unique IDs for each chunk
ids = [f"chunk_{i}" for i in range(len(chunks))]
# Create metadata for each chunk
metadatas = [
{
"chunk_id": i,
"document_name": document_name,
"chunk_length": len(chunk),
"created_at": datetime.now().isoformat(),
"embedding_model": "text-embedding-ada-002"
}
for i, chunk in enumerate(chunks)
]
# Store in ChromaDB
self.collection.add(
embeddings=embeddings,
documents=chunks,
metadatas=metadatas,
ids=ids
)
# Create storage metadata
storage_metadata = {
"collection_name": collection_name,
"total_vectors_stored": len(chunks),
"embedding_dimension": len(embeddings[0]) if embeddings else 0,
"embedding_model": "text-embedding-ada-002",
"storage_timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"database_status": "Successfully stored",
"database_type": "ChromaDB Local",
"database_path": "./chroma_db",
"embedding_metadata": embedding_metadata
}
return storage_metadata
except Exception as e:
return {"error": f"Storage failed: {str(e)}"}
def semantic_search(self, query: str, top_k: int = 5) -> Tuple[List[Dict], Dict]:
"""Perform semantic search using OpenAI embeddings and return top-k results"""
if not self.collection:
return [], {"error": "No collection available. Please upload and process a document first."}
if not self.openai_client:
return [], {"error": "OpenAI client not initialized for query embedding generation"}
try:
# Generate query embedding using OpenAI
query_embedding = self.get_openai_embedding(query)
# Search in ChromaDB
results = self.collection.query(
query_embeddings=[query_embedding],
n_results=top_k,
include=['documents', 'metadatas', 'distances']
)
# Format results
search_results = []
for i in range(len(results['documents'][0])):
result = {
"chunk_id": results['metadatas'][0][i]['chunk_id'],
"similarity_score": 1 - results['distances'][0][i], # Convert distance to similarity
"content": results['documents'][0][i][:500] + "..." if len(results['documents'][0][i]) > 500 else results['documents'][0][i],
"full_content": results['documents'][0][i],
"metadata": results['metadatas'][0][i]
}
search_results.append(result)
# Create search metadata
search_metadata = {
"query": query,
"results_found": len(search_results),
"search_timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"top_similarity_score": max([r["similarity_score"] for r in search_results]) if search_results else 0,
"query_embedding_model": "text-embedding-ada-002",
"vector_database": "ChromaDB Local"
}
return search_results, search_metadata
except Exception as e:
return [], {"error": f"Search failed: {str(e)}"}
def generate_llm_response(self, query: str, search_results: List[Dict]) -> Tuple[str, Dict]:
"""Generate final response using OpenAI LLM"""
if not self.openai_client:
return "OpenAI client not initialized for LLM response generation.", {}
try:
# Prepare context from search results
context = "\n\n".join([
f"Chunk {result['chunk_id']} (Similarity: {result['similarity_score']:.3f}):\n{result['full_content']}"
for result in search_results
])
# Create prompt
prompt = f"""Based on the following financial document excerpts, please provide a comprehensive and accurate answer to the user's question.
Context from financial document:
{context}
User Question: {query}
Instructions:
1. Provide a detailed, well-structured answer based solely on the provided context
2. If the context doesn't contain enough information to fully answer the question, clearly state this
3. Include specific numbers, dates, and financial figures when available
4. Structure your response clearly with proper formatting
5. Cite which chunk(s) your information comes from when possible
Answer:"""
# Generate response using OpenAI
response = self.openai_client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "You are a financial analyst AI assistant. Provide accurate, well-structured responses based on the given financial document context."},
{"role": "user", "content": prompt}
],
max_tokens=1000,
temperature=0.1
)
llm_response = response.choices[0].message.content
# Create response metadata
response_metadata = {
"model_used": "gpt-3.5-turbo",
"response_length": len(llm_response),
"tokens_used": response.usage.total_tokens,
"prompt_tokens": response.usage.prompt_tokens,
"completion_tokens": response.usage.completion_tokens,
"generation_timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"context_chunks_used": len(search_results),
"temperature": 0.1,
"max_tokens": 1000
}
return llm_response, response_metadata
except Exception as e:
return f"LLM Generation failed: {str(e)}", {"error": str(e)}
# Initialize RAG pipeline
rag_pipeline = RAGPipeline()
def configure_openai_api(openai_key):
"""Configure OpenAI API key"""
try:
# Set OpenAI API key
rag_pipeline.set_openai_key(openai_key)
# Test OpenAI connection
if openai_key:
try:
# Test with a simple API call
test_response = rag_pipeline.openai_client.models.list()
openai_status = "β
OpenAI API key validated successfully"
except Exception as e:
openai_status = f"β OpenAI API key validation failed: {str(e)}"
else:
openai_status = "β OpenAI API key required"
# ChromaDB status (local setup)
if rag_pipeline.chroma_client:
chroma_status = "β
ChromaDB Local database ready (./chroma_db)"
else:
chroma_status = "β ChromaDB Local database initialization failed"
return f"{openai_status}\n{chroma_status}"
except Exception as e:
return f"β Configuration failed: {str(e)}"
# Remove the global variable since we're storing in the class
# extracted_text_store = ""
def process_pdf_upload(pdf_file):
"""Process uploaded PDF and extract text"""
if pdf_file is None:
return "No file uploaded", "{}"
# Extract text using the updated method
text, metadata = rag_pipeline.extract_text_from_pdf(pdf_file)
if text.startswith("Error"):
return text, json.dumps(metadata, indent=2)
# Show more text in preview (first 3000 characters instead of 2000)
preview_text = text[:3000] + f"...\n\n[SHOWING FIRST 3000 CHARACTERS OF {len(text)} TOTAL CHARACTERS]\n[FULL TEXT STORED FOR PROCESSING - Total Length: {len(rag_pipeline.full_extracted_text)} chars]" if len(text) > 3000 else text
return preview_text, json.dumps(metadata, indent=2)
def process_chunking(text, chunk_size, overlap):
"""Process text chunking"""
# Always use the full text stored in the pipeline object
if not rag_pipeline.full_extracted_text:
return "No text available for chunking. Please upload a PDF first.", "{}"
full_text = rag_pipeline.full_extracted_text
print(f"DEBUG: Using full text for chunking, length: {len(full_text)}")
if len(full_text.strip()) == 0:
return "No valid text available for chunking.", "{}"
chunks, metadata = rag_pipeline.chunk_text(full_text, int(chunk_size), int(overlap))
if not chunks:
return "No chunks created. Please check your text and parameters.", json.dumps(metadata, indent=2)
# Display first few chunks as preview
preview = f"=== CHUNKING RESULTS ===\n"
preview += f"Total chunks created: {len(chunks)}\n"
preview += f"Full text length processed: {len(full_text)} characters\n\n"
preview += "--- CHUNK PREVIEW ---\n\n"
for i, chunk in enumerate(chunks[:3]):
preview += f"Chunk {i+1} (Length: {len(chunk)} chars):\n"
preview += f"{chunk[:200]}...\n\n"
preview += "-" * 50 + "\n\n"
if len(chunks) > 3:
preview += f"... and {len(chunks)-3} more chunks\n"
preview += f"Shortest chunk: {min(len(c) for c in chunks)} chars\n"
preview += f"Longest chunk: {max(len(c) for c in chunks)} chars\n"
return preview, json.dumps(metadata, indent=2)
def process_vector_storage(text, chunk_size, overlap, doc_name):
"""Process vector storage in local ChromaDB"""
if not rag_pipeline.openai_client:
return "Please configure OpenAI API key first in the Configuration tab", "{}"
if not rag_pipeline.chroma_client:
return "ChromaDB local database not available. Please restart the application.", "{}"
# Always use the stored full text
if not rag_pipeline.full_extracted_text:
return "No valid text to store. Please upload a PDF first.", "{}"
full_text = rag_pipeline.full_extracted_text
print(f"DEBUG: Using full text for storage, length: {len(full_text)}")
# Re-chunk the text using full text
chunks, _ = rag_pipeline.chunk_text(full_text, int(chunk_size), int(overlap))
if not chunks:
return "No chunks to store", "{}"
# Store in ChromaDB
storage_metadata = rag_pipeline.store_in_chromadb(chunks, doc_name or "financial_document")
if "error" in storage_metadata:
return f"Storage failed: {storage_metadata['error']}", json.dumps(storage_metadata, indent=2)
return f"Successfully stored {len(chunks)} chunks in ChromaDB Local using OpenAI embeddings\nFull text length: {len(full_text)} characters", json.dumps(storage_metadata, indent=2)
def process_semantic_search(query, top_k):
"""Process semantic search"""
if not query.strip():
return "Please enter a search query", "{}", ""
search_results, search_metadata = rag_pipeline.semantic_search(query, int(top_k))
if not search_results:
return "No results found", json.dumps(search_metadata, indent=2), ""
# Format results for display
results_display = "=== TOP MATCHING CHUNKS ===\n\n"
for i, result in enumerate(search_results, 1):
results_display += f"RESULT {i}:\n"
results_display += f"Chunk ID: {result['chunk_id']}\n"
results_display += f"Similarity Score: {result['similarity_score']:.4f}\n"
results_display += f"Content Preview: {result['content']}\n"
results_display += "-" * 50 + "\n\n"
# Create DataFrame for structured display
df_data = []
for result in search_results:
df_data.append({
"Chunk ID": result['chunk_id'],
"Similarity Score": f"{result['similarity_score']:.4f}",
"Content Length": len(result['full_content']),
"Preview": result['content'][:100] + "..."
})
df = pd.DataFrame(df_data)
return results_display, json.dumps(search_metadata, indent=2), df
def generate_final_response(query, top_k):
"""Generate final LLM response"""
if not rag_pipeline.openai_client:
return "Please configure OpenAI API key first in the Configuration tab", "{}"
if not query.strip():
return "Please enter a query first", "{}"
# Get search results
search_results, _ = rag_pipeline.semantic_search(query, int(top_k))
if not search_results:
return "No search results available for LLM generation", "{}"
# Generate LLM response
response, metadata = rag_pipeline.generate_llm_response(query, search_results)
return response, json.dumps(metadata, indent=2)
def create_gradio_interface():
"""Create the Gradio interface"""
with gr.Blocks(title="RAG Pipeline Demo - Financial Document Analysis", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# π¦ RAG Pipeline Demo - Financial Document Analysis
This demo shows a complete Retrieval-Augmented Generation (RAG) pipeline with full transparency.
Each step is clearly displayed so you can understand exactly what's happening in the backend.
**π§ Start by configuring your API keys in the Configuration tab below.**
""")
# Configuration Tab - Simplified
with gr.Tab("βοΈ Configuration"):
gr.Markdown("### API Configuration")
gr.Markdown("Configure your OpenAI API key. ChromaDB will run locally and store data in `./chroma_db` folder.")
with gr.Row():
with gr.Column():
gr.Markdown("#### OpenAI API Key")
gr.Markdown("Required for both embeddings generation and LLM response generation")
openai_key_input = gr.Textbox(
label="OpenAI API Key",
type="password",
placeholder="sk-...",
info="Get your API key from: https://platform.openai.com/api-keys"
)
with gr.Column():
gr.Markdown("#### ChromaDB Status")
gr.Markdown("β
**Local ChromaDB**: Data will be stored locally in `./chroma_db`")
gr.Markdown("π **Storage Location**: Current directory/chroma_db")
gr.Markdown("π **Persistence**: Data persists between sessions")
config_btn = gr.Button("Save OpenAI Configuration", variant="primary", size="lg")
config_status = gr.Textbox(label="Configuration Status", lines=3)
# Step 1: Document Upload
with gr.Tab("1οΈβ£ Document Upload"):
gr.Markdown("### Step 1: Upload Your Financial PDF Document")
with gr.Row():
with gr.Column():
pdf_input = gr.File(label="Upload PDF Document", file_types=[".pdf"])
upload_btn = gr.Button("Extract Text from PDF", variant="primary")
with gr.Column():
extraction_output = gr.Textbox(label="Extracted Text Preview", lines=15, max_lines=20)
extraction_metadata = gr.JSON(label="Extraction Metadata")
# Step 2: Text Chunking
with gr.Tab("2οΈβ£ Text Chunking"):
gr.Markdown("### Step 2: Split Text into Manageable Chunks")
with gr.Row():
with gr.Column():
chunk_size = gr.Slider(minimum=200, maximum=2000, value=1000, label="Chunk Size (characters)")
overlap = gr.Slider(minimum=0, maximum=500, value=200, label="Overlap (characters)")
chunk_btn = gr.Button("Create Chunks", variant="primary")
with gr.Column():
chunks_output = gr.Textbox(label="Chunks Preview", lines=15, max_lines=20)
chunking_metadata = gr.JSON(label="Chunking Metadata")
# Step 3: Vector Storage
with gr.Tab("3οΈβ£ Vector Storage"):
gr.Markdown("### Step 3: Store Chunks in ChromaDB Vector Database")
with gr.Row():
with gr.Column():
doc_name = gr.Textbox(label="Document Name", value="financial_report", placeholder="Enter document name")
storage_btn = gr.Button("Store in ChromaDB", variant="primary")
with gr.Column():
storage_output = gr.Textbox(label="Storage Status", lines=5)
storage_metadata = gr.JSON(label="Storage Metadata")
# Step 4: Semantic Search
with gr.Tab("4οΈβ£ Semantic Search"):
gr.Markdown("### Step 4: Search for Relevant Information")
with gr.Row():
with gr.Column():
search_query = gr.Textbox(label="Enter your question", placeholder="e.g., What was the revenue growth in Q4?")
top_k = gr.Slider(minimum=1, maximum=10, value=5, label="Number of results to retrieve")
search_btn = gr.Button("Search Vector Database", variant="primary")
with gr.Column():
search_results_text = gr.Textbox(label="Search Results", lines=15, max_lines=20)
search_metadata = gr.JSON(label="Search Metadata")
# Results table
results_table = gr.DataFrame(label="Top Matching Chunks - Structured View")
# Step 5: LLM Response Generation
with gr.Tab("5οΈβ£ LLM Response"):
gr.Markdown("### Step 5: Generate Final Answer using OpenAI")
gr.Markdown("*Note: OpenAI API key must be configured in the Configuration tab*")
with gr.Row():
with gr.Column():
generate_btn = gr.Button("Generate Final Response", variant="primary")
gr.Markdown("**Current Query:** Will use the query from Step 4")
with gr.Column():
final_response = gr.Textbox(label="AI Generated Response", lines=15, max_lines=20)
response_metadata = gr.JSON(label="Response Metadata")
# Complete Pipeline Tab
with gr.Tab("π Complete Pipeline"):
gr.Markdown("### Run the Complete RAG Pipeline")
gr.Markdown("*Note: Make sure to configure API keys in the Configuration tab first*")
with gr.Row():
with gr.Column():
complete_pdf = gr.File(label="Upload PDF", file_types=[".pdf"])
complete_query = gr.Textbox(label="Your Question", placeholder="Ask about the financial document")
with gr.Column():
complete_chunk_size = gr.Slider(minimum=200, maximum=2000, value=1000, label="Chunk Size")
complete_overlap = gr.Slider(minimum=0, maximum=500, value=200, label="Overlap")
complete_top_k = gr.Slider(minimum=1, maximum=10, value=5, label="Top K Results")
complete_btn = gr.Button("Run Complete Pipeline", variant="primary", size="lg")
with gr.Row():
pipeline_status = gr.Textbox(label="Pipeline Status", lines=10)
pipeline_response = gr.Textbox(label="Final Answer", lines=10)
# Event handlers
config_btn.click(
configure_openai_api,
inputs=[openai_key_input],
outputs=[config_status]
)
upload_btn.click(
process_pdf_upload,
inputs=[pdf_input],
outputs=[extraction_output, extraction_metadata]
)
chunk_btn.click(
process_chunking,
inputs=[extraction_output, chunk_size, overlap],
outputs=[chunks_output, chunking_metadata]
)
storage_btn.click(
process_vector_storage,
inputs=[extraction_output, chunk_size, overlap, doc_name],
outputs=[storage_output, storage_metadata]
)
search_btn.click(
process_semantic_search,
inputs=[search_query, top_k],
outputs=[search_results_text, search_metadata, results_table]
)
generate_btn.click(
generate_final_response,
inputs=[search_query, top_k],
outputs=[final_response, response_metadata]
)
# Complete pipeline function
def run_complete_pipeline(pdf_file, query, chunk_size, overlap, top_k):
if not pdf_file or not query:
return "Please provide PDF file and query", ""
if not rag_pipeline.openai_client:
return "Please configure OpenAI API key in the Configuration tab first", ""
if not rag_pipeline.chroma_client:
return "ChromaDB local database not available. Please restart the application.", ""
status = "Starting RAG Pipeline...\n\n"
status += "Using: ChromaDB Local + OpenAI API\n"
status += "Storage: ./chroma_db directory\n\n"
try:
# Step 1: Extract text
status += "Step 1: Extracting text from PDF...\n"
text, _ = rag_pipeline.extract_text_from_pdf(pdf_file)
if text.startswith("Error"):
return status + f"Failed: {text}", ""
status += "β
Text extraction completed\n\n"
# Step 2: Chunk text
status += "Step 2: Chunking text...\n"
chunks, _ = rag_pipeline.chunk_text(text, chunk_size, overlap)
status += f"β
Created {len(chunks)} chunks\n\n"
# Step 3: Store in vector DB
status += f"Step 3: Generating OpenAI embeddings and storing in ChromaDB Local...\n"
storage_result = rag_pipeline.store_in_chromadb(chunks, "complete_pipeline_doc")
if "error" in storage_result:
return status + f"Failed: {storage_result['error']}", ""
status += f"β
Vectors stored in ChromaDB Local using OpenAI embeddings\n\n"
# Step 4: Search
status += "Step 4: Performing semantic search with OpenAI embeddings...\n"
search_results, _ = rag_pipeline.semantic_search(query, top_k)
if not search_results:
return status + "β No search results found", ""
status += f"β
Found {len(search_results)} relevant chunks\n\n"
# Step 5: Generate response
status += "Step 5: Generating LLM response...\n"
response, _ = rag_pipeline.generate_llm_response(query, search_results)
if response.startswith("LLM Generation failed"):
return status + f"Failed: {response}", ""
status += "β
Final response generated successfully!"
return status, response
except Exception as e:
return status + f"β Pipeline failed: {str(e)}", ""
complete_btn.click(
run_complete_pipeline,
inputs=[complete_pdf, complete_query, complete_chunk_size, complete_overlap, complete_top_k],
outputs=[pipeline_status, pipeline_response]
)
return demo
# Launch the application
if __name__ == "__main__":
# Install required packages
print("Starting RAG Pipeline Demo...")
print("Make sure you have installed the required packages:")
print("pip install gradio PyPDF2 chromadb openai pandas numpy")
print("\nConfiguration:")
print("β
ChromaDB: Local storage (./chroma_db directory)")
print("π OpenAI: API key required for embeddings + LLM")
print("π Data persistence: Enabled across sessions")
# Create and launch the Gradio interface
demo = create_gradio_interface()
demo.launch() |