Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +126 -0
- requirements.txt +0 -0
app.py
ADDED
|
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app_yolo11_blur_nomargin.py
|
| 2 |
+
from pathlib import Path
|
| 3 |
+
import cv2
|
| 4 |
+
import numpy as np
|
| 5 |
+
import gradio as gr
|
| 6 |
+
from ultralytics import YOLO
|
| 7 |
+
from huggingface_hub import hf_hub_download
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
# ===== CONFIG =====
|
| 11 |
+
DEVICE = "cpu" # "cpu" ou "cuda:0"
|
| 12 |
+
CONF_DEFAULT = 0.30
|
| 13 |
+
IOU_DEFAULT = 0.50
|
| 14 |
+
|
| 15 |
+
weights_path = hf_hub_download(
|
| 16 |
+
repo_id="morsetechlab/yolov11-license-plate-detection",
|
| 17 |
+
filename="license-plate-finetune-v1l.pt"
|
| 18 |
+
)
|
| 19 |
+
model = YOLO(weights_path)
|
| 20 |
+
|
| 21 |
+
# ===== BLUR SANS MARGE =====
|
| 22 |
+
def blur_bbox_nomargin(img, x1, y1, x2, y2, blur_strength=0.24, feather=8):
|
| 23 |
+
"""
|
| 24 |
+
Floute exactement la bbox YOLO (aucune marge).
|
| 25 |
+
- feather (px) : adoucit seulement À L'INTÉRIEUR du rectangle (pas de débordement).
|
| 26 |
+
Mets 0 pour un bord net.
|
| 27 |
+
"""
|
| 28 |
+
H, W = img.shape[:2]
|
| 29 |
+
x1, y1 = max(0, x1), max(0, y1)
|
| 30 |
+
x2, y2 = min(W, x2), min(H, y2)
|
| 31 |
+
w, h = x2 - x1, y2 - y1
|
| 32 |
+
if w <= 0 or h <= 0:
|
| 33 |
+
return img
|
| 34 |
+
|
| 35 |
+
# flou global (on compositera avec un masque)
|
| 36 |
+
k = int(max(w, h) * blur_strength)
|
| 37 |
+
k = max(31, (k // 2) * 2 + 1) # impair, min 31 pour un rendu smooth
|
| 38 |
+
blurred_full = cv2.GaussianBlur(img, (k, k), 0)
|
| 39 |
+
|
| 40 |
+
# masque rectangulaire strict (aucune marge)
|
| 41 |
+
mask = np.zeros((H, W), dtype=np.uint8)
|
| 42 |
+
cv2.rectangle(mask, (x1, y1), (x2, y2), 255, thickness=-1)
|
| 43 |
+
|
| 44 |
+
if feather > 0:
|
| 45 |
+
# Feather interne (ne dépasse pas le rectangle) via distance transform
|
| 46 |
+
# alpha = 1 au cœur, 0 au bord du rectangle, transition sur 'feather' px
|
| 47 |
+
# (évite l'élargissement qu'on aurait avec un simple Gaussian sur le masque)
|
| 48 |
+
obj = (mask > 0).astype(np.uint8) # 0/1
|
| 49 |
+
dist = cv2.distanceTransform(obj, distanceType=cv2.DIST_L2, maskSize=3)
|
| 50 |
+
# clips: 0..feather -> 0..1
|
| 51 |
+
alpha = np.clip(dist / float(feather), 0.0, 1.0)
|
| 52 |
+
else:
|
| 53 |
+
alpha = (mask.astype(np.float32) / 255.0)
|
| 54 |
+
|
| 55 |
+
alpha = alpha[..., None] # HxWx1
|
| 56 |
+
out = (alpha * blurred_full + (1.0 - alpha) * img).astype(np.uint8)
|
| 57 |
+
return out
|
| 58 |
+
|
| 59 |
+
# ===== PIPELINE =====
|
| 60 |
+
def anonymize(image, conf=CONF_DEFAULT, iou=IOU_DEFAULT, blur_strength=0.24, feather=8):
|
| 61 |
+
if image is None:
|
| 62 |
+
return None, "Aucune image."
|
| 63 |
+
bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
| 64 |
+
|
| 65 |
+
results = model.predict(source=bgr, conf=conf, iou=iou, device=DEVICE, verbose=False)
|
| 66 |
+
|
| 67 |
+
out = bgr.copy()
|
| 68 |
+
total = 0
|
| 69 |
+
for r in results:
|
| 70 |
+
if r.boxes is None:
|
| 71 |
+
continue
|
| 72 |
+
for (x1, y1, x2, y2) in r.boxes.xyxy.cpu().numpy().astype(int):
|
| 73 |
+
# Ajuste feather si la bbox est trop petite
|
| 74 |
+
w, h = x2 - x1, y2 - y1
|
| 75 |
+
f_eff = min(feather, max(w // 2 - 1, 0), max(h // 2 - 1, 0))
|
| 76 |
+
out = blur_bbox_nomargin(out, x1, y1, x2, y2,
|
| 77 |
+
blur_strength=blur_strength,
|
| 78 |
+
feather=f_eff)
|
| 79 |
+
total += 1
|
| 80 |
+
|
| 81 |
+
out_rgb = cv2.cvtColor(out, cv2.COLOR_BGR2RGB)
|
| 82 |
+
|
| 83 |
+
if total == 0:
|
| 84 |
+
log = "🔍 Aucune plaque d'immatriculation détectée dans cette image"
|
| 85 |
+
elif total == 1:
|
| 86 |
+
log = f"✅ 1 plaque anonymisée avec succès (Confiance: {conf:.0%}, Flou: {blur_strength:.0%})"
|
| 87 |
+
else:
|
| 88 |
+
log = f"✅ {total} plaques anonymisées avec succès (Confiance: {conf:.0%}, Flou: {blur_strength:.0%})"
|
| 89 |
+
|
| 90 |
+
return out_rgb, log
|
| 91 |
+
|
| 92 |
+
# ===== UI =====
|
| 93 |
+
with gr.Blocks(title="Anonymisation Automatique de Plaques d'Immatriculation") as demo:
|
| 94 |
+
gr.Markdown("""
|
| 95 |
+
# 🚗 Anonymisation Automatique de Plaques d'Immatriculation
|
| 96 |
+
|
| 97 |
+
**Détection et floutage intelligent des plaques avec IA**
|
| 98 |
+
|
| 99 |
+
📋 **Instructions :**
|
| 100 |
+
1. Téléchargez ou glissez-déposez votre image
|
| 101 |
+
2. L'anonymisation se fait automatiquement
|
| 102 |
+
|
| 103 |
+
""")
|
| 104 |
+
|
| 105 |
+
with gr.Row():
|
| 106 |
+
with gr.Column():
|
| 107 |
+
gr.Markdown("### 📤 **Image à traiter**")
|
| 108 |
+
inp = gr.Image(type="numpy", label="Sélectionnez votre image", height=400)
|
| 109 |
+
|
| 110 |
+
btn = gr.Button("🔒 Anonymiser l'image", variant="primary", size="lg")
|
| 111 |
+
|
| 112 |
+
with gr.Column():
|
| 113 |
+
gr.Markdown("### 📥 **Résultat**")
|
| 114 |
+
out_img = gr.Image(type="numpy", label="Image anonymisée", height=400)
|
| 115 |
+
out_log = gr.Textbox(
|
| 116 |
+
label="📊 Rapport de traitement",
|
| 117 |
+
interactive=False,
|
| 118 |
+
info="Détails sur le nombre de plaques détectées et les paramètres utilisés"
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
btn.click(anonymize, [inp], [out_img, out_log])
|
| 122 |
+
inp.change(anonymize, [inp], [out_img, out_log])
|
| 123 |
+
|
| 124 |
+
if __name__ == "__main__":
|
| 125 |
+
import os
|
| 126 |
+
demo.launch(server_name="0.0.0.0", server_port=int(os.getenv("PORT", "7860")))
|
requirements.txt
ADDED
|
Binary file (370 Bytes). View file
|
|
|