Spaces:
Build error
Build error
Commit
·
b52bed7
1
Parent(s):
2d191f6
Added inference
Browse files- app.py +54 -1
- requirements.txt +2 -0
app.py
CHANGED
|
@@ -7,6 +7,7 @@ import torch.nn as nn
|
|
| 7 |
from model import Projections
|
| 8 |
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
| 9 |
import gradio as gr
|
|
|
|
| 10 |
|
| 11 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 12 |
projections = Projections(512, 3072)
|
|
@@ -47,7 +48,59 @@ whisper_processor = WhisperProcessor.from_pretrained(whisper_model_name)
|
|
| 47 |
whisper_model = WhisperForConditionalGeneration.from_pretrained(whisper_model_name)
|
| 48 |
|
| 49 |
def infer(message, history):
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
examples=[{'text':"I am planning to buy a dog and a cat. Suggest some breeds that get along with each other"},
|
| 53 |
{'text':"Explain biased coin flip"},
|
|
|
|
| 7 |
from model import Projections
|
| 8 |
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
| 9 |
import gradio as gr
|
| 10 |
+
import librosa
|
| 11 |
|
| 12 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 13 |
projections = Projections(512, 3072)
|
|
|
|
| 48 |
whisper_model = WhisperForConditionalGeneration.from_pretrained(whisper_model_name)
|
| 49 |
|
| 50 |
def infer(message, history):
|
| 51 |
+
max_generate_length = 100
|
| 52 |
+
combined_embeds = []
|
| 53 |
+
|
| 54 |
+
with torch.no_grad():
|
| 55 |
+
if message['file']:
|
| 56 |
+
projected_image_embeds = None
|
| 57 |
+
audio_text_embeds = None
|
| 58 |
+
for path in message['file']:
|
| 59 |
+
|
| 60 |
+
if path.endswith(('.jpg', '.png', '.jpeg')):
|
| 61 |
+
image = clip_preprocess(Image.open(path)).unsqueeze(0).to(device)
|
| 62 |
+
image_features = clip_model.encode_image(image)
|
| 63 |
+
projected_image_embeds = projections(image_features.to(torch.bfloat16)).unsqueeze(0)
|
| 64 |
+
|
| 65 |
+
elif path.endswith(('.mp3', '.wav')):
|
| 66 |
+
# Load and preprocess the audio
|
| 67 |
+
speech, rate = librosa.load(path, sr=16000)
|
| 68 |
+
input_features = whisper_processor(speech, return_tensors="pt", sampling_rate=16000).input_features
|
| 69 |
+
predicted_ids = whisper_model.generate(input_features)
|
| 70 |
+
transcription = whisper_processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
| 71 |
+
prompt = tokenizer.apply_chat_template([{"from": "human", "value": transcription}], tokenize=False, add_generation_prompt=True)
|
| 72 |
+
prompt_tokens = tokenizer(prompt, padding=True, truncation=True, max_length=2048, return_tensors="pt")['input_ids']
|
| 73 |
+
audio_text_embeds = model.get_input_embeddings()(prompt_tokens)
|
| 74 |
+
|
| 75 |
+
if projected_image_embeds:
|
| 76 |
+
combined_embeds.append(projected_image_embeds)
|
| 77 |
+
|
| 78 |
+
if audio_text_embeds:
|
| 79 |
+
combined_embeds.append(audio_text_embeds)
|
| 80 |
+
|
| 81 |
+
if message['text']:
|
| 82 |
+
prompt = tokenizer.apply_chat_template([{"from": "human", "value": transcription}], tokenize=False, add_generation_prompt=True)
|
| 83 |
+
prompt_tokens = tokenizer(prompt, padding=True, truncation=True, max_length=2048, return_tensors="pt")['input_ids']
|
| 84 |
+
text_embeds = model.get_input_embeddings()(prompt_tokens)
|
| 85 |
+
combined_embeds.append(text_embeds)
|
| 86 |
+
|
| 87 |
+
combined_embeds = torch.cat(combined_embeds,dim=1)
|
| 88 |
+
|
| 89 |
+
#val_combined_embeds = torch.cat([val_image_embeds, img_token_embeds, val_q_embeds], dim=1) # 4, 69, 2560
|
| 90 |
+
predicted_caption = torch.full((1,max_generate_length),50256).to(device)
|
| 91 |
+
|
| 92 |
+
for g in range(max_generate_length):
|
| 93 |
+
phi_output_logits = model(inputs_embeds=combined_embeds)['logits'] # 4, 69, 51200
|
| 94 |
+
predicted_word_token_logits = phi_output_logits[:, -1, :].unsqueeze(1) # 4,1,51200
|
| 95 |
+
predicted_word_token = torch.argmax(predicted_word_token_logits, dim = -1) # 4,1
|
| 96 |
+
predicted_caption[:,g] = predicted_word_token.view(1,-1)
|
| 97 |
+
next_token_embeds = model.get_input_embeddings()(prompt_tokens) # 4,1,2560
|
| 98 |
+
combined_embeds = torch.cat([combined_embeds, next_token_embeds], dim=1)
|
| 99 |
+
|
| 100 |
+
predicted_captions_decoded = tokenizer.batch_decode(predicted_caption,ignore_index = 50256)[0]
|
| 101 |
+
|
| 102 |
+
return predicted_captions_decoded
|
| 103 |
+
|
| 104 |
|
| 105 |
examples=[{'text':"I am planning to buy a dog and a cat. Suggest some breeds that get along with each other"},
|
| 106 |
{'text':"Explain biased coin flip"},
|
requirements.txt
CHANGED
|
@@ -3,6 +3,8 @@ clip @ git+https://github.com/openai/CLIP.git@dcba3cb2e2827b402d2701e7e1c7d9fed8
|
|
| 3 |
colorama==0.4.6
|
| 4 |
datasets==3.0.0
|
| 5 |
dill==0.3.8
|
|
|
|
|
|
|
| 6 |
multiprocess==0.70.16
|
| 7 |
numpy==1.26.4
|
| 8 |
pandas==2.2.2
|
|
|
|
| 3 |
colorama==0.4.6
|
| 4 |
datasets==3.0.0
|
| 5 |
dill==0.3.8
|
| 6 |
+
gradio==5.0.2
|
| 7 |
+
librosa==0.10.2
|
| 8 |
multiprocess==0.70.16
|
| 9 |
numpy==1.26.4
|
| 10 |
pandas==2.2.2
|