Spaces:
Runtime error
Runtime error
| import spaces | |
| import gradio as gr | |
| import numpy as np | |
| import pandas as pd | |
| import time | |
| css=""" | |
| #col-left { | |
| margin: 0 auto; | |
| max-width: 640px; | |
| } | |
| #col-right { | |
| margin: 0 auto; | |
| max-width: 640px; | |
| } | |
| .grid-container { | |
| display: flex; | |
| align-items: center; | |
| justify-content: center; | |
| gap:10px | |
| } | |
| .image { | |
| width: 128px; | |
| height: 128px; | |
| object-fit: cover; | |
| } | |
| .text { | |
| font-size: 16px; | |
| } | |
| """ | |
| emotion_columns = ['admiration', 'amusement', 'anger', 'annoyance', 'approval', | |
| 'caring', 'confusion', 'curiosity', 'desire', 'disappointment', | |
| 'disapproval', 'disgust', 'embarrassment', 'excitement', 'fear', | |
| 'gratitude', 'grief', 'joy', 'love', 'nervousness', 'optimism', | |
| 'pride', 'realization', 'relief', 'remorse', 'sadness', 'surprise','neutral'] | |
| def load_text(text_path: str) -> str: | |
| with open(text_path, 'r', encoding='utf-8') as f: | |
| text = f.read() | |
| return text | |
| def select_checkbox(name): | |
| if name =="All": | |
| return gr.CheckboxGroup(value=emotion_columns) | |
| elif name =="None": | |
| return [] | |
| elif name =="Positive": | |
| return ["admiration","amusement","approval","caring","curiosity","desire","excitement","gratitude","joy","love","optimism","pride","relief"] | |
| elif name =="Negative": | |
| return ["anger","annoyance","disappointment","disapproval","disgust","fear","grief","embarrassment","remorse","sadness"] | |
| else: | |
| return ["confusion","nervousness","neutral","realization","surprise"] | |
| def process_datas(checked_emotions,mode="filter",max_data=100,skip_data=0): | |
| checked_emotions = sorted(checked_emotions) | |
| df = pd.read_parquet("hf://datasets/google-research-datasets/go_emotions/raw/train-00000-of-00001.parquet") | |
| def filter_emotions(emotions): | |
| unchecked = emotion_columns.copy() | |
| condition_checked = np.all(df[emotions] == 1, axis=1) | |
| for emotion in checked_emotions: | |
| unchecked.remove(emotion) | |
| condition_unchecked = np.all(df[unchecked] == 0, axis=1) | |
| filtered_df = df[condition_checked & condition_unchecked] | |
| return filtered_df | |
| def df_to_text(df): | |
| df = df.iloc[skip_data:] | |
| if len(filtered_df) == 0: | |
| return "" | |
| texts=(df.head(max_data)[['text']].to_string(index=False,max_colwidth=None)) | |
| trimmed_texts = [line.strip() for line in texts.split('\n')[1:] if line.strip()] | |
| return "\n".join(trimmed_texts) | |
| if mode == "filter": | |
| filtered_df = filter_emotions(checked_emotions) | |
| count = (len(filtered_df)) | |
| trimmed_texts = df_to_text(filtered_df) | |
| last_count = min(count,(skip_data+max_data)) | |
| label = f"{skip_data+1} - {last_count} of {count}" | |
| label_texts = [f"[{emotion}]" for emotion in checked_emotions] | |
| output_text = "+".join(label_texts)+"\n"+trimmed_texts | |
| output_label = label | |
| else: | |
| max_data = max(1,int(max_data/len(checked_emotions))) | |
| text_arrays = [] | |
| for emotion in checked_emotions: | |
| text_arrays.append(f"[{emotion}]") | |
| filtered_df = filter_emotions([emotion]) | |
| trimmed_texts = df_to_text(filtered_df) | |
| text_arrays.append(trimmed_texts) | |
| text_arrays.append("\n") | |
| print(text_arrays) | |
| output_text = "\n".join(text_arrays) | |
| output_label = f"{len(checked_emotions)} x {max_data}" | |
| return output_text,output_label,",".join(checked_emotions) | |
| with gr.Blocks(css=css, elem_id="demo-container") as demo: | |
| with gr.Column(): | |
| gr.HTML(load_text("demo_header.html")) | |
| gr.HTML(load_text("demo_tools.html")) | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Row(equal_height=True): | |
| mode_group = gr.Radio(choices=["filter","list"],label="Mode",value="filter") | |
| selection_name = gr.Dropdown(label="Select",choices=["All","None","Positive","Negative","Neutral"],value="All") | |
| selection_btn= gr.Button("Update Selection") | |
| checkbox_group = gr.CheckboxGroup(choices=emotion_columns,label="Emotions",value=["love"]) | |
| btn= gr.Button("View Data",variant="primary") | |
| with gr.Row(): | |
| max_data = gr.Slider( | |
| label="Max Data", | |
| minimum=0, | |
| maximum=540, | |
| step=10, | |
| value=50,info="returning large data is heavy action,if you need more copy the space") | |
| skip_data = gr.Slider( | |
| label="Skip Data", | |
| minimum=0, | |
| maximum=100000, | |
| step=1, | |
| value=0) | |
| with gr.Column(): | |
| with gr.Row(): | |
| data_size = gr.Textbox(label="Data Count",scale=1) | |
| checked_size = gr.Textbox(label="Checked",scale=2) | |
| text_out = gr.TextArea(label="Output", elem_id="output-text") | |
| btn.click(fn=process_datas, inputs=[checkbox_group,mode_group,max_data,skip_data], outputs =[text_out,data_size,checked_size], api_name='infer') | |
| selection_btn.click(fn=select_checkbox,inputs=[selection_name],outputs=[checkbox_group]) | |
| gr.Examples( | |
| examples=[ | |
| ], | |
| inputs=[], | |
| ) | |
| gr.HTML( | |
| gr.HTML(load_text("demo_footer.html")) | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |