File size: 5,697 Bytes
61e31a5
4af9c3b
44feade
4af9c3b
 
 
 
44feade
4af9c3b
 
 
44feade
4af9c3b
44feade
4af9c3b
44feade
4af9c3b
 
44feade
 
4af9c3b
 
 
 
 
 
 
44feade
4af9c3b
44feade
4af9c3b
 
 
 
 
 
 
 
 
44feade
4af9c3b
 
 
 
44feade
 
 
61e31a5
44feade
 
4af9c3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61e31a5
 
44feade
 
 
61e31a5
 
 
 
 
44feade
 
 
 
 
 
 
61e31a5
 
 
 
 
4af9c3b
44feade
4af9c3b
44feade
4af9c3b
 
 
 
44feade
4af9c3b
44feade
 
 
 
61e31a5
 
 
44feade
 
 
4af9c3b
61e31a5
44feade
 
 
 
4af9c3b
44feade
61e31a5
 
 
 
44feade
61e31a5
44feade
61e31a5
44feade
61e31a5
44feade
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61e31a5
44feade
 
 
 
4af9c3b
44feade
61e31a5
4af9c3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61e31a5
4af9c3b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import gradio as gr
import requests
import os
import base64
from io import BytesIO
from PIL import Image
import json

# Hugging Face API configuration
HF_TOKEN = os.environ.get("HF_TOKEN", "")
API_URL = "https://api-inference.huggingface.co/models/tencent/HunyuanImage-3.0"

headers = {"Authorization": f"Bearer {HF_TOKEN}"}

def generate_image_api(prompt, seed=42, num_inference_steps=50):
    """
    Generate image using Hugging Face Inference API
    Uses paid API from your HF account balance
    """
    try:
        payload = {
            "inputs": prompt,
            "parameters": {
                "seed": int(seed),
                "num_inference_steps": int(num_inference_steps)
            }
        }
        
        response = requests.post(API_URL, headers=headers, json=payload, timeout=60)
        
        if response.status_code == 200:
            image = Image.open(BytesIO(response.content))
            return image, seed, "Success!"
        else:
            error_msg = f"API Error: {response.status_code} - {response.text}"
            print(error_msg)
            placeholder = Image.new('RGB', (1024, 1024), color=(240, 240, 245))
            return placeholder, seed, error_msg
            
    except Exception as e:
        error_msg = f"Error: {str(e)}"
        print(error_msg)
        placeholder = Image.new('RGB', (1024, 1024), color=(240, 240, 245))
        return placeholder, seed, error_msg

def infer(prompt, seed, randomize_seed, diff_infer_steps, image_size):
    import random
    if randomize_seed:
        seed = random.randint(0, 2**32 - 1)
    
    image, used_seed, status = generate_image_api(prompt, seed, diff_infer_steps)
    return image, used_seed, status

def api_generate(prompt: str, seed: int = 42, num_inference_steps: int = 50):
    """
    API endpoint for external integrations like n8n
    Returns base64 encoded image
    """
    try:
        image, used_seed, status = generate_image_api(prompt, seed, num_inference_steps)
        
        buffered = BytesIO()
        image.save(buffered, format="PNG")
        img_str = base64.b64encode(buffered.getvalue()).decode()
        
        return {
            "success": True,
            "image_base64": img_str,
            "seed": used_seed,
            "status": status,
            "prompt": prompt
        }
    except Exception as e:
        return {
            "success": False,
            "error": str(e),
            "seed": seed,
            "prompt": prompt
        }

examples = [
    "A brown and white dog is running on the grass",
    "A futuristic city at sunset with flying cars",
    "A serene mountain landscape with a crystal clear lake",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 800px;
}
.note {
    background: #fff3cd;
    padding: 15px;
    border-radius: 8px;
    margin: 10px 0;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("# 🎨 HunyuanImage-3.0 Text-to-Image with Inference API")
        gr.Markdown(
            """### Tencent HunyuanImage-3.0 - Using Paid Hugging Face Inference API
            
            βœ… This Space now uses the Hugging Face Inference API (paid from your account balance)
            - Real image generation with HunyuanImage-3.0
            - API endpoint available for n8n integration
            - Set your HF_TOKEN in Space secrets
            
            πŸ”— For n8n integration: Use the API endpoint at /gradio_api/ with the api_generate function
            """,
            elem_classes="note"
        )
        
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=True,
                max_lines=3,
                placeholder="Enter your prompt for image generation...",
                value="A serene mountain landscape with a crystal clear lake"
            )
        
        run_button = gr.Button("🎨 Generate Image", variant="primary")
        
        result = gr.Image(label="Generated Image", show_label=True)
        status_text = gr.Textbox(label="Status", interactive=False)
        
        with gr.Accordion("Advanced Settings", open=False):
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=2**32 - 1,
                step=1,
                value=42,
            )
            
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
            diff_infer_steps = gr.Slider(
                label="Diffusion inference steps",
                minimum=10,
                maximum=100,
                step=10,
                value=50,
            )
            
            image_size = gr.Radio(
                label="Image Size",
                choices=["auto", "1024x1024", "1280x768", "768x1280"],
                value="auto",
            )
        
        gr.Examples(examples=examples, inputs=[prompt])
        
        run_button.click(
            fn=infer,
            inputs=[prompt, seed, randomize_seed, diff_infer_steps, image_size],
            outputs=[result, seed, status_text],
        )

api_demo = gr.Interface(
    fn=api_generate,
    inputs=[
        gr.Text(label="Prompt"),
        gr.Number(label="Seed", value=42),
        gr.Number(label="Inference Steps", value=50)
    ],
    outputs=gr.JSON(label="Response"),
    title="HunyuanImage-3.0 API Endpoint",
    description="API endpoint for n8n and other integrations. Returns base64 encoded image."
)

app = gr.TabbedInterface(
    [demo, api_demo],
    ["Interface", "API Endpoint"],
    title="HunyuanImage-3.0 Generator"
)

if __name__ == "__main__":
    app.launch()