Spaces:
Running
Running
| import gradio as gr | |
| from huggingface_hub import InferenceClient | |
| import os | |
| import base64 | |
| from io import BytesIO | |
| from PIL import Image | |
| HF_TOKEN = os.environ.get("HF_TOKEN", "") | |
| client = InferenceClient(provider="fal-ai", api_key=HF_TOKEN) | |
| def generate_image_api(prompt, seed=42, num_inference_steps=50): | |
| try: | |
| image = client.text_to_image( | |
| prompt, | |
| model="tencent/HunyuanImage-3.0", | |
| seed=int(seed), | |
| num_inference_steps=int(num_inference_steps) | |
| ) | |
| return image, seed, "Success!" | |
| except Exception as e: | |
| placeholder = Image.new('RGB', (1024, 1024), color=(240, 240, 245)) | |
| return placeholder, seed, f"Error: {str(e)}" | |
| def infer(prompt, seed, randomize_seed, diff_infer_steps, image_size): | |
| import random | |
| if randomize_seed: | |
| seed = random.randint(0, 2 ** 32 - 1) | |
| image, used_seed, status = generate_image_api(prompt, seed, diff_infer_steps) | |
| return image, used_seed, status | |
| def api_generate(prompt: str, seed: int = 42, num_inference_steps: int = 50): | |
| try: | |
| image, used_seed, status = generate_image_api(prompt, seed, num_inference_steps) | |
| buffered = BytesIO() | |
| image.save(buffered, format="PNG") | |
| img_str = base64.b64encode(buffered.getvalue()).decode() | |
| return { | |
| "success": True, | |
| "image_base64": img_str, | |
| "seed": used_seed, | |
| "status": status, | |
| "prompt": prompt | |
| } | |
| except Exception as e: | |
| return { | |
| "success": False, | |
| "error": str(e), | |
| "seed": seed, | |
| "prompt": prompt | |
| } | |
| examples = [ | |
| "A brown and white dog is running on the grass", | |
| "A futuristic city at sunset with flying cars", | |
| "A serene mountain landscape with a crystal clear lake", | |
| ] | |
| css = """ | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 800px; | |
| } | |
| .note { | |
| background: #fff3cd; | |
| padding: 15px; | |
| border-radius: 8px; | |
| margin: 10px 0; | |
| } | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown("# 🎨 HunyuanImage-3.0 Text-to-Image using fal.ai Provider") | |
| gr.Markdown( | |
| """ | |
| ### Tencent HunyuanImage-3.0 - Using fal.ai Inference Provider | |
| ✅ هذه المساحة الآن تولّد صور حقيقية فعلياً عبر مزود fal.ai | |
| 🔗 كل شيء يعمل تلقائياً باستخدام التوكن HF_TOKEN من أسرارك. | |
| """, | |
| elem_classes="note" | |
| ) | |
| with gr.Row(): | |
| prompt = gr.Text( | |
| label="Prompt", | |
| show_label=True, | |
| max_lines=3, | |
| placeholder="Enter your prompt for image generation...", | |
| value="A serene mountain landscape with a crystal clear lake" | |
| ) | |
| run_button = gr.Button("🎨 Generate Image", variant="primary") | |
| result = gr.Image(label="Generated Image", show_label=True) | |
| status_text = gr.Textbox(label="Status", interactive=False) | |
| with gr.Accordion("Advanced Settings", open=False): | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=2**32 - 1, | |
| step=1, | |
| value=42, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| diff_infer_steps = gr.Slider( | |
| label="Inference Steps", | |
| minimum=1, | |
| maximum=100, | |
| step=1, | |
| value=50, | |
| ) | |
| image_size = gr.Radio( | |
| choices=["1024x1024"], | |
| value="1024x1024", | |
| label="Image Size" | |
| ) | |
| gr.Examples( | |
| examples=examples, | |
| inputs=[prompt], | |
| outputs=[result, seed, status_text], | |
| fn=infer, | |
| cache_examples=False, | |
| ) | |
| run_button.click( | |
| fn=infer, | |
| inputs=[prompt, seed, randomize_seed, diff_infer_steps, image_size], | |
| outputs=[result, seed, status_text], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |