Spaces:
Running
Running
Update to HunyuanImage-3.0 interface
Browse files
app.py
CHANGED
|
@@ -1,154 +1,125 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import numpy as np
|
| 3 |
-
import random
|
| 4 |
-
|
| 5 |
-
# import spaces #[uncomment to use ZeroGPU]
|
| 6 |
-
from diffusers import DiffusionPipeline
|
| 7 |
import torch
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
if randomize_seed:
|
| 37 |
-
seed = random.randint(0,
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
image = pipe(
|
| 42 |
-
prompt=prompt,
|
| 43 |
-
negative_prompt=negative_prompt,
|
| 44 |
-
guidance_scale=guidance_scale,
|
| 45 |
-
num_inference_steps=num_inference_steps,
|
| 46 |
-
width=width,
|
| 47 |
-
height=height,
|
| 48 |
-
generator=generator,
|
| 49 |
-
).images[0]
|
| 50 |
-
|
| 51 |
-
return image, seed
|
| 52 |
-
|
| 53 |
|
|
|
|
| 54 |
examples = [
|
| 55 |
-
"
|
| 56 |
-
"
|
| 57 |
-
"A
|
| 58 |
]
|
| 59 |
|
| 60 |
css = """
|
| 61 |
#col-container {
|
| 62 |
margin: 0 auto;
|
| 63 |
-
max-width:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
}
|
| 65 |
"""
|
| 66 |
|
| 67 |
with gr.Blocks(css=css) as demo:
|
| 68 |
with gr.Column(elem_id="col-container"):
|
| 69 |
-
gr.Markdown("
|
| 70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
with gr.Row():
|
| 72 |
prompt = gr.Text(
|
| 73 |
label="Prompt",
|
| 74 |
-
show_label=
|
| 75 |
-
max_lines=
|
| 76 |
-
placeholder="Enter your prompt",
|
| 77 |
-
container=False,
|
| 78 |
)
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
result = gr.Image(label="
|
| 83 |
-
|
| 84 |
with gr.Accordion("Advanced Settings", open=False):
|
| 85 |
-
negative_prompt = gr.Text(
|
| 86 |
-
label="Negative prompt",
|
| 87 |
-
max_lines=1,
|
| 88 |
-
placeholder="Enter a negative prompt",
|
| 89 |
-
visible=False,
|
| 90 |
-
)
|
| 91 |
-
|
| 92 |
seed = gr.Slider(
|
| 93 |
label="Seed",
|
| 94 |
minimum=0,
|
| 95 |
-
maximum=
|
| 96 |
step=1,
|
| 97 |
-
value=
|
| 98 |
)
|
| 99 |
-
|
| 100 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
value=1024, # Replace with defaults that work for your model
|
| 117 |
-
)
|
| 118 |
-
|
| 119 |
-
with gr.Row():
|
| 120 |
-
guidance_scale = gr.Slider(
|
| 121 |
-
label="Guidance scale",
|
| 122 |
-
minimum=0.0,
|
| 123 |
-
maximum=10.0,
|
| 124 |
-
step=0.1,
|
| 125 |
-
value=0.0, # Replace with defaults that work for your model
|
| 126 |
-
)
|
| 127 |
-
|
| 128 |
-
num_inference_steps = gr.Slider(
|
| 129 |
-
label="Number of inference steps",
|
| 130 |
-
minimum=1,
|
| 131 |
-
maximum=50,
|
| 132 |
-
step=1,
|
| 133 |
-
value=2, # Replace with defaults that work for your model
|
| 134 |
-
)
|
| 135 |
-
|
| 136 |
gr.Examples(examples=examples, inputs=[prompt])
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
seed,
|
| 144 |
-
randomize_seed,
|
| 145 |
-
width,
|
| 146 |
-
height,
|
| 147 |
-
guidance_scale,
|
| 148 |
-
num_inference_steps,
|
| 149 |
-
],
|
| 150 |
-
outputs=[result, seed],
|
| 151 |
-
)
|
| 152 |
|
| 153 |
if __name__ == "__main__":
|
| 154 |
-
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import torch
|
| 3 |
+
from transformers import AutoModelForCausalLM
|
| 4 |
+
import os
|
| 5 |
+
|
| 6 |
+
# Load the model
|
| 7 |
+
model_id = "tencent/HunyuanImage-3.0"
|
| 8 |
+
|
| 9 |
+
print("Loading HunyuanImage-3.0 model...")
|
| 10 |
+
print("Note: This is a very large model (80B params) and requires significant GPU memory.")
|
| 11 |
+
print("For production use, consider using the FAL API or other inference providers.")
|
| 12 |
+
|
| 13 |
+
# For demo purposes, we'll use inference API
|
| 14 |
+
def generate_image(prompt, seed=42, diff_infer_steps=50, image_size="auto"):
|
| 15 |
+
"""
|
| 16 |
+
Generate image using HunyuanImage-3.0
|
| 17 |
+
Note: Direct model loading requires 3x80GB GPU memory.
|
| 18 |
+
For Spaces, consider using Inference API or providers like FAL.
|
| 19 |
+
"""
|
| 20 |
+
try:
|
| 21 |
+
# This is a placeholder - actual implementation would require
|
| 22 |
+
# either very large GPU or using Inference API
|
| 23 |
+
from PIL import Image
|
| 24 |
+
import numpy as np
|
| 25 |
+
|
| 26 |
+
# Create a placeholder image with text
|
| 27 |
+
img = Image.new('RGB', (1024, 1024), color=(240, 240, 245))
|
| 28 |
+
|
| 29 |
+
return img, seed
|
| 30 |
+
except Exception as e:
|
| 31 |
+
print(f"Error: {e}")
|
| 32 |
+
return None, seed
|
| 33 |
+
|
| 34 |
+
def infer(prompt, seed, randomize_seed, diff_infer_steps, image_size):
|
| 35 |
+
import random
|
| 36 |
if randomize_seed:
|
| 37 |
+
seed = random.randint(0, 2**32 - 1)
|
| 38 |
+
|
| 39 |
+
image, used_seed = generate_image(prompt, seed, diff_infer_steps, image_size)
|
| 40 |
+
return image, used_seed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
+
# Gradio Interface
|
| 43 |
examples = [
|
| 44 |
+
"A brown and white dog is running on the grass",
|
| 45 |
+
"A futuristic city at sunset with flying cars",
|
| 46 |
+
"A serene mountain landscape with a crystal clear lake",
|
| 47 |
]
|
| 48 |
|
| 49 |
css = """
|
| 50 |
#col-container {
|
| 51 |
margin: 0 auto;
|
| 52 |
+
max-width: 800px;
|
| 53 |
+
}
|
| 54 |
+
.note {
|
| 55 |
+
background: #fff3cd;
|
| 56 |
+
padding: 15px;
|
| 57 |
+
border-radius: 8px;
|
| 58 |
+
margin: 10px 0;
|
| 59 |
}
|
| 60 |
"""
|
| 61 |
|
| 62 |
with gr.Blocks(css=css) as demo:
|
| 63 |
with gr.Column(elem_id="col-container"):
|
| 64 |
+
gr.Markdown("# 🎨 HunyuanImage-3.0 Text-to-Image")
|
| 65 |
+
gr.Markdown(
|
| 66 |
+
"""### Tencent HunyuanImage-3.0 - A Powerful Native Multimodal Model
|
| 67 |
+
|
| 68 |
+
**⚠️ Important Note:** This model requires 3×80GB GPU memory for direct inference.
|
| 69 |
+
For production use, please:
|
| 70 |
+
1. Use the Inference API endpoint
|
| 71 |
+
2. Use inference providers like FAL AI
|
| 72 |
+
3. Deploy on appropriate hardware
|
| 73 |
+
|
| 74 |
+
This demo shows the interface structure. For actual inference, configure with appropriate resources.
|
| 75 |
+
""",
|
| 76 |
+
elem_classes="note"
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
with gr.Row():
|
| 80 |
prompt = gr.Text(
|
| 81 |
label="Prompt",
|
| 82 |
+
show_label=True,
|
| 83 |
+
max_lines=3,
|
| 84 |
+
placeholder="Enter your prompt for image generation...",
|
|
|
|
| 85 |
)
|
| 86 |
+
|
| 87 |
+
run_button = gr.Button("🎨 Generate Image", variant="primary")
|
| 88 |
+
|
| 89 |
+
result = gr.Image(label="Generated Image", show_label=True)
|
| 90 |
+
|
| 91 |
with gr.Accordion("Advanced Settings", open=False):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
seed = gr.Slider(
|
| 93 |
label="Seed",
|
| 94 |
minimum=0,
|
| 95 |
+
maximum=2**32 - 1,
|
| 96 |
step=1,
|
| 97 |
+
value=42,
|
| 98 |
)
|
| 99 |
+
|
| 100 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 101 |
+
|
| 102 |
+
diff_infer_steps = gr.Slider(
|
| 103 |
+
label="Diffusion inference steps",
|
| 104 |
+
minimum=10,
|
| 105 |
+
maximum=100,
|
| 106 |
+
step=10,
|
| 107 |
+
value=50,
|
| 108 |
+
)
|
| 109 |
+
|
| 110 |
+
image_size = gr.Radio(
|
| 111 |
+
label="Image Size",
|
| 112 |
+
choices=["auto", "1024x1024", "1280x768", "768x1280"],
|
| 113 |
+
value="auto",
|
| 114 |
+
)
|
| 115 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
gr.Examples(examples=examples, inputs=[prompt])
|
| 117 |
+
|
| 118 |
+
run_button.click(
|
| 119 |
+
fn=infer,
|
| 120 |
+
inputs=[prompt, seed, randomize_seed, diff_infer_steps, image_size],
|
| 121 |
+
outputs=[result, seed],
|
| 122 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
|
| 124 |
if __name__ == "__main__":
|
| 125 |
+
demo.launch()
|