Alae65 commited on
Commit
44feade
·
verified ·
1 Parent(s): a94502b

Update to HunyuanImage-3.0 interface

Browse files
Files changed (1) hide show
  1. app.py +96 -125
app.py CHANGED
@@ -1,154 +1,125 @@
1
  import gradio as gr
2
- import numpy as np
3
- import random
4
-
5
- # import spaces #[uncomment to use ZeroGPU]
6
- from diffusers import DiffusionPipeline
7
  import torch
8
-
9
- device = "cuda" if torch.cuda.is_available() else "cpu"
10
- model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
11
-
12
- if torch.cuda.is_available():
13
- torch_dtype = torch.float16
14
- else:
15
- torch_dtype = torch.float32
16
-
17
- pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
18
- pipe = pipe.to(device)
19
-
20
- MAX_SEED = np.iinfo(np.int32).max
21
- MAX_IMAGE_SIZE = 1024
22
-
23
-
24
- # @spaces.GPU #[uncomment to use ZeroGPU]
25
- def infer(
26
- prompt,
27
- negative_prompt,
28
- seed,
29
- randomize_seed,
30
- width,
31
- height,
32
- guidance_scale,
33
- num_inference_steps,
34
- progress=gr.Progress(track_tqdm=True),
35
- ):
 
 
 
 
 
36
  if randomize_seed:
37
- seed = random.randint(0, MAX_SEED)
38
-
39
- generator = torch.Generator().manual_seed(seed)
40
-
41
- image = pipe(
42
- prompt=prompt,
43
- negative_prompt=negative_prompt,
44
- guidance_scale=guidance_scale,
45
- num_inference_steps=num_inference_steps,
46
- width=width,
47
- height=height,
48
- generator=generator,
49
- ).images[0]
50
-
51
- return image, seed
52
-
53
 
 
54
  examples = [
55
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
56
- "An astronaut riding a green horse",
57
- "A delicious ceviche cheesecake slice",
58
  ]
59
 
60
  css = """
61
  #col-container {
62
  margin: 0 auto;
63
- max-width: 640px;
 
 
 
 
 
 
64
  }
65
  """
66
 
67
  with gr.Blocks(css=css) as demo:
68
  with gr.Column(elem_id="col-container"):
69
- gr.Markdown(" # Text-to-Image Gradio Template")
70
-
 
 
 
 
 
 
 
 
 
 
 
 
 
71
  with gr.Row():
72
  prompt = gr.Text(
73
  label="Prompt",
74
- show_label=False,
75
- max_lines=1,
76
- placeholder="Enter your prompt",
77
- container=False,
78
  )
79
-
80
- run_button = gr.Button("Run", scale=0, variant="primary")
81
-
82
- result = gr.Image(label="Result", show_label=False)
83
-
84
  with gr.Accordion("Advanced Settings", open=False):
85
- negative_prompt = gr.Text(
86
- label="Negative prompt",
87
- max_lines=1,
88
- placeholder="Enter a negative prompt",
89
- visible=False,
90
- )
91
-
92
  seed = gr.Slider(
93
  label="Seed",
94
  minimum=0,
95
- maximum=MAX_SEED,
96
  step=1,
97
- value=0,
98
  )
99
-
100
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
101
-
102
- with gr.Row():
103
- width = gr.Slider(
104
- label="Width",
105
- minimum=256,
106
- maximum=MAX_IMAGE_SIZE,
107
- step=32,
108
- value=1024, # Replace with defaults that work for your model
109
- )
110
-
111
- height = gr.Slider(
112
- label="Height",
113
- minimum=256,
114
- maximum=MAX_IMAGE_SIZE,
115
- step=32,
116
- value=1024, # Replace with defaults that work for your model
117
- )
118
-
119
- with gr.Row():
120
- guidance_scale = gr.Slider(
121
- label="Guidance scale",
122
- minimum=0.0,
123
- maximum=10.0,
124
- step=0.1,
125
- value=0.0, # Replace with defaults that work for your model
126
- )
127
-
128
- num_inference_steps = gr.Slider(
129
- label="Number of inference steps",
130
- minimum=1,
131
- maximum=50,
132
- step=1,
133
- value=2, # Replace with defaults that work for your model
134
- )
135
-
136
  gr.Examples(examples=examples, inputs=[prompt])
137
- gr.on(
138
- triggers=[run_button.click, prompt.submit],
139
- fn=infer,
140
- inputs=[
141
- prompt,
142
- negative_prompt,
143
- seed,
144
- randomize_seed,
145
- width,
146
- height,
147
- guidance_scale,
148
- num_inference_steps,
149
- ],
150
- outputs=[result, seed],
151
- )
152
 
153
  if __name__ == "__main__":
154
- demo.launch()
 
1
  import gradio as gr
 
 
 
 
 
2
  import torch
3
+ from transformers import AutoModelForCausalLM
4
+ import os
5
+
6
+ # Load the model
7
+ model_id = "tencent/HunyuanImage-3.0"
8
+
9
+ print("Loading HunyuanImage-3.0 model...")
10
+ print("Note: This is a very large model (80B params) and requires significant GPU memory.")
11
+ print("For production use, consider using the FAL API or other inference providers.")
12
+
13
+ # For demo purposes, we'll use inference API
14
+ def generate_image(prompt, seed=42, diff_infer_steps=50, image_size="auto"):
15
+ """
16
+ Generate image using HunyuanImage-3.0
17
+ Note: Direct model loading requires 3x80GB GPU memory.
18
+ For Spaces, consider using Inference API or providers like FAL.
19
+ """
20
+ try:
21
+ # This is a placeholder - actual implementation would require
22
+ # either very large GPU or using Inference API
23
+ from PIL import Image
24
+ import numpy as np
25
+
26
+ # Create a placeholder image with text
27
+ img = Image.new('RGB', (1024, 1024), color=(240, 240, 245))
28
+
29
+ return img, seed
30
+ except Exception as e:
31
+ print(f"Error: {e}")
32
+ return None, seed
33
+
34
+ def infer(prompt, seed, randomize_seed, diff_infer_steps, image_size):
35
+ import random
36
  if randomize_seed:
37
+ seed = random.randint(0, 2**32 - 1)
38
+
39
+ image, used_seed = generate_image(prompt, seed, diff_infer_steps, image_size)
40
+ return image, used_seed
 
 
 
 
 
 
 
 
 
 
 
 
41
 
42
+ # Gradio Interface
43
  examples = [
44
+ "A brown and white dog is running on the grass",
45
+ "A futuristic city at sunset with flying cars",
46
+ "A serene mountain landscape with a crystal clear lake",
47
  ]
48
 
49
  css = """
50
  #col-container {
51
  margin: 0 auto;
52
+ max-width: 800px;
53
+ }
54
+ .note {
55
+ background: #fff3cd;
56
+ padding: 15px;
57
+ border-radius: 8px;
58
+ margin: 10px 0;
59
  }
60
  """
61
 
62
  with gr.Blocks(css=css) as demo:
63
  with gr.Column(elem_id="col-container"):
64
+ gr.Markdown("# 🎨 HunyuanImage-3.0 Text-to-Image")
65
+ gr.Markdown(
66
+ """### Tencent HunyuanImage-3.0 - A Powerful Native Multimodal Model
67
+
68
+ **⚠️ Important Note:** This model requires 3×80GB GPU memory for direct inference.
69
+ For production use, please:
70
+ 1. Use the Inference API endpoint
71
+ 2. Use inference providers like FAL AI
72
+ 3. Deploy on appropriate hardware
73
+
74
+ This demo shows the interface structure. For actual inference, configure with appropriate resources.
75
+ """,
76
+ elem_classes="note"
77
+ )
78
+
79
  with gr.Row():
80
  prompt = gr.Text(
81
  label="Prompt",
82
+ show_label=True,
83
+ max_lines=3,
84
+ placeholder="Enter your prompt for image generation...",
 
85
  )
86
+
87
+ run_button = gr.Button("🎨 Generate Image", variant="primary")
88
+
89
+ result = gr.Image(label="Generated Image", show_label=True)
90
+
91
  with gr.Accordion("Advanced Settings", open=False):
 
 
 
 
 
 
 
92
  seed = gr.Slider(
93
  label="Seed",
94
  minimum=0,
95
+ maximum=2**32 - 1,
96
  step=1,
97
+ value=42,
98
  )
99
+
100
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
101
+
102
+ diff_infer_steps = gr.Slider(
103
+ label="Diffusion inference steps",
104
+ minimum=10,
105
+ maximum=100,
106
+ step=10,
107
+ value=50,
108
+ )
109
+
110
+ image_size = gr.Radio(
111
+ label="Image Size",
112
+ choices=["auto", "1024x1024", "1280x768", "768x1280"],
113
+ value="auto",
114
+ )
115
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
116
  gr.Examples(examples=examples, inputs=[prompt])
117
+
118
+ run_button.click(
119
+ fn=infer,
120
+ inputs=[prompt, seed, randomize_seed, diff_infer_steps, image_size],
121
+ outputs=[result, seed],
122
+ )
 
 
 
 
 
 
 
 
 
123
 
124
  if __name__ == "__main__":
125
+ demo.launch()