Spaces:
Runtime error
Runtime error
update: use nougat-transformer
Browse files- app.py +58 -112
- requirements.txt +3 -3
app.py
CHANGED
|
@@ -10,11 +10,17 @@ import sys
|
|
| 10 |
import importlib.util
|
| 11 |
from tqdm import tqdm
|
| 12 |
|
| 13 |
-
#
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
# Set an environment variable
|
| 20 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
|
@@ -28,7 +34,7 @@ DESCRIPTION = '''
|
|
| 28 |
<p>This Space demonstrates the instruction-tuned model <a href="https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct"><b>Meta Llama3 8b Chat</b></a>. Meta Llama3 is the new open LLM and comes in two sizes: 8b and 70b. Feel free to play with it, or duplicate to run privately!</p>
|
| 29 |
<p>🔎 For more details about the Llama3 release and how to use the model with <code>transformers</code>, take a look <a href="https://huggingface.co/blog/llama3">at our blog post</a>.</p>
|
| 30 |
<p>🦕 Looking for an even more powerful model? Check out the <a href="https://huggingface.co/chat/"><b>Hugging Chat</b></a> integration for Meta Llama 3 70b</p>
|
| 31 |
-
<p>📝 <b>PDF处理功能:</b> 本应用使用<a href="https://
|
| 32 |
</div>
|
| 33 |
'''
|
| 34 |
|
|
@@ -87,115 +93,69 @@ except:
|
|
| 87 |
if not terminators:
|
| 88 |
terminators = [2] # 使用常见的</s>标记ID作为默认值
|
| 89 |
|
| 90 |
-
# 使用
|
| 91 |
-
def process_pdf_with_nougat_gpu(pdf_path, output_dir=None):
|
| 92 |
-
"""使用GPU运行Nougat处理PDF文件"""
|
| 93 |
-
try:
|
| 94 |
-
# 如果未指定输出目录,使用PDF所在目录
|
| 95 |
-
if output_dir is None:
|
| 96 |
-
output_dir = os.path.dirname(pdf_path)
|
| 97 |
-
|
| 98 |
-
# 设置CUDA环境变量
|
| 99 |
-
env = os.environ.copy()
|
| 100 |
-
env["CUDA_VISIBLE_DEVICES"] = "0" # 使用第一个GPU
|
| 101 |
-
env["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
|
| 102 |
-
|
| 103 |
-
# 执行带有GPU支持的Nougat命令
|
| 104 |
-
print(f"使用GPU运行Nougat: {pdf_path}")
|
| 105 |
-
cmd = ["nougat", pdf_path, "-o", output_dir, "--device", "cuda"]
|
| 106 |
-
|
| 107 |
-
# 执行命令并捕获输出
|
| 108 |
-
result = subprocess.run(
|
| 109 |
-
cmd,
|
| 110 |
-
stdout=subprocess.PIPE,
|
| 111 |
-
stderr=subprocess.PIPE,
|
| 112 |
-
text=True,
|
| 113 |
-
env=env,
|
| 114 |
-
timeout=300 # 5分钟超时
|
| 115 |
-
)
|
| 116 |
-
|
| 117 |
-
# 检查命令执行结果
|
| 118 |
-
if result.returncode != 0:
|
| 119 |
-
print(f"Nougat GPU处理失败: {result.stderr}")
|
| 120 |
-
return None, result.stderr
|
| 121 |
-
|
| 122 |
-
# 获取生成的markdown文件路径
|
| 123 |
-
base_name = os.path.basename(pdf_path)
|
| 124 |
-
name_without_ext = os.path.splitext(base_name)[0]
|
| 125 |
-
markdown_path = os.path.join(output_dir, f"{name_without_ext}.mmd")
|
| 126 |
-
|
| 127 |
-
# 检查markdown文件是否生成
|
| 128 |
-
if not os.path.exists(markdown_path):
|
| 129 |
-
return None, "Nougat处理完成,但未找到生成的Markdown文件"
|
| 130 |
-
|
| 131 |
-
# 读取markdown内容
|
| 132 |
-
with open(markdown_path, "r", encoding="utf-8") as f:
|
| 133 |
-
markdown_content = f.read()
|
| 134 |
-
|
| 135 |
-
return markdown_content, None
|
| 136 |
-
|
| 137 |
-
except subprocess.TimeoutExpired:
|
| 138 |
-
return None, "Nougat处理超时"
|
| 139 |
-
|
| 140 |
-
except Exception as e:
|
| 141 |
-
import traceback
|
| 142 |
-
error = f"Nougat处理异常: {str(e)}\n{traceback.format_exc()}"
|
| 143 |
-
print(error)
|
| 144 |
-
return None, error
|
| 145 |
-
|
| 146 |
-
# 使用Python API的GPU处理方式
|
| 147 |
@spaces.GPU(stateless=True)
|
| 148 |
-
def
|
| 149 |
-
"""使用Nougat
|
| 150 |
try:
|
| 151 |
-
# 导入必要的库
|
| 152 |
-
from nougat import NougatModel
|
| 153 |
-
from nougat.utils.checkpoint import get_checkpoint
|
| 154 |
-
from nougat.dataset.rasterize import rasterize_paper
|
| 155 |
-
import torch
|
| 156 |
-
|
| 157 |
# ��保GPU可用
|
| 158 |
if not torch.cuda.is_available():
|
| 159 |
-
return None, "GPU不可用,无法使用Nougat
|
| 160 |
|
| 161 |
# 显示GPU信息
|
| 162 |
device_count = torch.cuda.device_count()
|
| 163 |
device_name = torch.cuda.get_device_name(0) if device_count > 0 else "Unknown"
|
| 164 |
print(f"使用GPU: {device_name}, 可用GPU数量: {device_count}")
|
| 165 |
|
| 166 |
-
#
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
|
|
|
|
|
|
|
|
|
| 170 |
model = model.to(device)
|
| 171 |
|
| 172 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
| 173 |
markdown_content = ""
|
| 174 |
-
pages = list(rasterize_paper(pdf_path))
|
| 175 |
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
|
| 182 |
return markdown_content, None
|
| 183 |
|
| 184 |
except Exception as e:
|
| 185 |
import traceback
|
| 186 |
-
error = f"Nougat
|
| 187 |
print(error)
|
| 188 |
return None, error
|
| 189 |
|
| 190 |
# 添加PDF转换为Markdown函数
|
| 191 |
def convert_pdf_to_markdown(pdf_file):
|
| 192 |
-
"""使用Nougat将PDF转换为Markdown
|
| 193 |
if pdf_file is None:
|
| 194 |
return "", "未上传PDF"
|
| 195 |
|
| 196 |
-
# 检查Nougat是否可用
|
| 197 |
-
if not
|
| 198 |
-
return "", "错误: Nougat未安装。请执行 'pip install
|
| 199 |
|
| 200 |
try:
|
| 201 |
# 创建临时目录用于存储PDF和输出文件
|
|
@@ -205,39 +165,25 @@ def convert_pdf_to_markdown(pdf_file):
|
|
| 205 |
with open(temp_pdf_path, "wb") as f:
|
| 206 |
f.write(pdf_file)
|
| 207 |
|
| 208 |
-
#
|
| 209 |
-
print("
|
| 210 |
-
markdown_content, error =
|
| 211 |
-
|
| 212 |
-
if markdown_content is not None:
|
| 213 |
-
# 限制文本长度
|
| 214 |
-
if len(markdown_content) > 20000:
|
| 215 |
-
markdown_content = markdown_content[:20000] + "\n\n...(Markdown内容已截断)"
|
| 216 |
-
|
| 217 |
-
status = f"PDF已成功转换为Markdown (GPU命令行): 生成了{len(markdown_content)}个字符"
|
| 218 |
-
return markdown_content, status
|
| 219 |
-
|
| 220 |
-
# 方法2: 如果命令行方式失败,尝试使用Python API方式
|
| 221 |
-
print(f"方法1失败: {error}")
|
| 222 |
-
print("方法2: 尝试使用Python API GPU方式处理PDF...")
|
| 223 |
-
|
| 224 |
-
markdown_content, api_error = process_pdf_with_nougat_api(temp_pdf_path)
|
| 225 |
|
| 226 |
if markdown_content is not None:
|
| 227 |
# 限制文本长度
|
| 228 |
if len(markdown_content) > 20000:
|
| 229 |
markdown_content = markdown_content[:20000] + "\n\n...(Markdown内容已截断)"
|
| 230 |
|
| 231 |
-
status = f"PDF已成功转换为Markdown (
|
| 232 |
return markdown_content, status
|
| 233 |
|
| 234 |
-
#
|
| 235 |
-
return "", f"PDF转换失败:
|
| 236 |
|
| 237 |
except Exception as e:
|
| 238 |
import traceback
|
| 239 |
error_details = traceback.format_exc()
|
| 240 |
-
print(f"Nougat转换错误: {str(e)}\n{error_details}")
|
| 241 |
return "", f"Markdown转换错误: {str(e)}"
|
| 242 |
|
| 243 |
@spaces.GPU(duration=120, stateless=True)
|
|
@@ -362,16 +308,16 @@ with gr.Blocks(fill_height=True, css=css) as demo:
|
|
| 362 |
|
| 363 |
clear_pdf_btn = gr.Button("清除PDF")
|
| 364 |
|
| 365 |
-
if
|
| 366 |
nougat_info = """
|
| 367 |
<div style="margin-top: 10px; margin-bottom: 10px;">
|
| 368 |
-
<p><b>Nougat PDF处理:</b> 系统将使用Nougat
|
| 369 |
</div>
|
| 370 |
"""
|
| 371 |
else:
|
| 372 |
nougat_info = """
|
| 373 |
<div style="margin-top: 10px; margin-bottom: 10px; color: #d32f2f;">
|
| 374 |
-
<p><b>Nougat未安装:</b> PDF处理功能需要Nougat。请执行 <code>pip install
|
| 375 |
</div>
|
| 376 |
"""
|
| 377 |
|
|
|
|
| 10 |
import importlib.util
|
| 11 |
from tqdm import tqdm
|
| 12 |
|
| 13 |
+
# Updated imports for transformers-based Nougat
|
| 14 |
+
TRANSFORMERS_NOUGAT_AVAILABLE = importlib.util.find_spec("transformers") is not None
|
| 15 |
+
try:
|
| 16 |
+
from transformers import VisionEncoderDecoderModel, NougatProcessor, NougatImageProcessor
|
| 17 |
+
from PIL import Image
|
| 18 |
+
import pdf2image
|
| 19 |
+
TRANSFORMERS_NOUGAT_AVAILABLE = True
|
| 20 |
+
except ImportError:
|
| 21 |
+
TRANSFORMERS_NOUGAT_AVAILABLE = False
|
| 22 |
+
print("Warning: transformers with Nougat support is not installed. PDF to Markdown conversion will not be available.")
|
| 23 |
+
print("To install required packages, run: pip install transformers pdf2image Pillow")
|
| 24 |
|
| 25 |
# Set an environment variable
|
| 26 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
|
|
|
| 34 |
<p>This Space demonstrates the instruction-tuned model <a href="https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct"><b>Meta Llama3 8b Chat</b></a>. Meta Llama3 is the new open LLM and comes in two sizes: 8b and 70b. Feel free to play with it, or duplicate to run privately!</p>
|
| 35 |
<p>🔎 For more details about the Llama3 release and how to use the model with <code>transformers</code>, take a look <a href="https://huggingface.co/blog/llama3">at our blog post</a>.</p>
|
| 36 |
<p>🦕 Looking for an even more powerful model? Check out the <a href="https://huggingface.co/chat/"><b>Hugging Chat</b></a> integration for Meta Llama 3 70b</p>
|
| 37 |
+
<p>📝 <b>PDF处理功能:</b> 本应用使用<a href="https://huggingface.co/docs/transformers/model_doc/nougat">Transformers Nougat</a>进行高质量PDF到Markdown的转换。该工具能够很好地保留原始布局、数学公式和表格,提供最佳的PDF文档处理体验。</p>
|
| 38 |
</div>
|
| 39 |
'''
|
| 40 |
|
|
|
|
| 93 |
if not terminators:
|
| 94 |
terminators = [2] # 使用常见的</s>标记ID作为默认值
|
| 95 |
|
| 96 |
+
# 使用transformers库中的Nougat模型处理PDF
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
@spaces.GPU(stateless=True)
|
| 98 |
+
def process_pdf_with_transformers_nougat(pdf_path):
|
| 99 |
+
"""使用transformers库中的Nougat模型将PDF转换为Markdown"""
|
| 100 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
# ��保GPU可用
|
| 102 |
if not torch.cuda.is_available():
|
| 103 |
+
return None, "GPU不可用,无法使用Nougat处理PDF"
|
| 104 |
|
| 105 |
# 显示GPU信息
|
| 106 |
device_count = torch.cuda.device_count()
|
| 107 |
device_name = torch.cuda.get_device_name(0) if device_count > 0 else "Unknown"
|
| 108 |
print(f"使用GPU: {device_name}, 可用GPU数量: {device_count}")
|
| 109 |
|
| 110 |
+
# 加载Nougat模型和处理器
|
| 111 |
+
processor = NougatProcessor.from_pretrained("facebook/nougat-base")
|
| 112 |
+
image_processor = NougatImageProcessor.from_pretrained("facebook/nougat-base")
|
| 113 |
+
model = VisionEncoderDecoderModel.from_pretrained("facebook/nougat-base")
|
| 114 |
+
|
| 115 |
+
# 将模型移到GPU
|
| 116 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 117 |
model = model.to(device)
|
| 118 |
|
| 119 |
+
# 将PDF转换为图像
|
| 120 |
+
print(f"将PDF转换为图像: {pdf_path}")
|
| 121 |
+
images = pdf2image.convert_from_path(pdf_path)
|
| 122 |
+
|
| 123 |
+
# 处理每一页并生成Markdown
|
| 124 |
markdown_content = ""
|
|
|
|
| 125 |
|
| 126 |
+
for page_idx, image in enumerate(tqdm(images, desc="处理PDF页面")):
|
| 127 |
+
# 处理图像
|
| 128 |
+
pixel_values = image_processor(image, return_tensors="pt").pixel_values.to(device)
|
| 129 |
+
|
| 130 |
+
# 生成文本
|
| 131 |
+
outputs = model.generate(
|
| 132 |
+
pixel_values,
|
| 133 |
+
max_length=1024,
|
| 134 |
+
num_beams=4,
|
| 135 |
+
early_stopping=True
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
# 解码输出
|
| 139 |
+
page_markdown = processor.decode(outputs[0], skip_special_tokens=True)
|
| 140 |
+
markdown_content += f"--- Page {page_idx+1} ---\n{page_markdown}\n\n"
|
| 141 |
|
| 142 |
return markdown_content, None
|
| 143 |
|
| 144 |
except Exception as e:
|
| 145 |
import traceback
|
| 146 |
+
error = f"Transformers Nougat处理异常: {str(e)}\n{traceback.format_exc()}"
|
| 147 |
print(error)
|
| 148 |
return None, error
|
| 149 |
|
| 150 |
# 添加PDF转换为Markdown函数
|
| 151 |
def convert_pdf_to_markdown(pdf_file):
|
| 152 |
+
"""使用Transformers Nougat将PDF转换为Markdown"""
|
| 153 |
if pdf_file is None:
|
| 154 |
return "", "未上传PDF"
|
| 155 |
|
| 156 |
+
# 检查Transformers Nougat是否可用
|
| 157 |
+
if not TRANSFORMERS_NOUGAT_AVAILABLE:
|
| 158 |
+
return "", "错误: Transformers Nougat未安装。请执行 'pip install transformers pdf2image Pillow' 安装后重试。"
|
| 159 |
|
| 160 |
try:
|
| 161 |
# 创建临时目录用于存储PDF和输出文件
|
|
|
|
| 165 |
with open(temp_pdf_path, "wb") as f:
|
| 166 |
f.write(pdf_file)
|
| 167 |
|
| 168 |
+
# 使用Transformers Nougat处理PDF
|
| 169 |
+
print("使用Transformers Nougat处理PDF...")
|
| 170 |
+
markdown_content, error = process_pdf_with_transformers_nougat(temp_pdf_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
|
| 172 |
if markdown_content is not None:
|
| 173 |
# 限制文本长度
|
| 174 |
if len(markdown_content) > 20000:
|
| 175 |
markdown_content = markdown_content[:20000] + "\n\n...(Markdown内容已截断)"
|
| 176 |
|
| 177 |
+
status = f"PDF已成功转换为Markdown (Transformers Nougat): 生成了{len(markdown_content)}个字符"
|
| 178 |
return markdown_content, status
|
| 179 |
|
| 180 |
+
# 处理失败
|
| 181 |
+
return "", f"PDF转换失败: Transformers Nougat处理失败\n错误: {error}"
|
| 182 |
|
| 183 |
except Exception as e:
|
| 184 |
import traceback
|
| 185 |
error_details = traceback.format_exc()
|
| 186 |
+
print(f"Transformers Nougat转换错误: {str(e)}\n{error_details}")
|
| 187 |
return "", f"Markdown转换错误: {str(e)}"
|
| 188 |
|
| 189 |
@spaces.GPU(duration=120, stateless=True)
|
|
|
|
| 308 |
|
| 309 |
clear_pdf_btn = gr.Button("清除PDF")
|
| 310 |
|
| 311 |
+
if TRANSFORMERS_NOUGAT_AVAILABLE:
|
| 312 |
nougat_info = """
|
| 313 |
<div style="margin-top: 10px; margin-bottom: 10px;">
|
| 314 |
+
<p><b>Transformers Nougat PDF处理:</b> 系统将使用Transformers库中的Nougat模型将上传的PDF转换为高质量Markdown。Nougat能够很好地保留原始布局、数学公式和表格,远优于传统的PDF文本提取。</p>
|
| 315 |
</div>
|
| 316 |
"""
|
| 317 |
else:
|
| 318 |
nougat_info = """
|
| 319 |
<div style="margin-top: 10px; margin-bottom: 10px; color: #d32f2f;">
|
| 320 |
+
<p><b>Transformers Nougat未安装:</b> PDF处理功能需要Transformers Nougat。请执行 <code>pip install transformers pdf2image Pillow</code> 安装后重试。</p>
|
| 321 |
</div>
|
| 322 |
"""
|
| 323 |
|
requirements.txt
CHANGED
|
@@ -1,11 +1,11 @@
|
|
| 1 |
huggingface_hub
|
| 2 |
pydantic==2.10.6
|
| 3 |
-
transformers[torch]
|
| 4 |
torch
|
| 5 |
tqdm
|
| 6 |
accelerate
|
| 7 |
gradio
|
| 8 |
python-dotenv
|
| 9 |
albumentations==1.3.1
|
| 10 |
-
|
| 11 |
-
|
|
|
|
| 1 |
huggingface_hub
|
| 2 |
pydantic==2.10.6
|
| 3 |
+
transformers[torch]>=4.36.0
|
| 4 |
torch
|
| 5 |
tqdm
|
| 6 |
accelerate
|
| 7 |
gradio
|
| 8 |
python-dotenv
|
| 9 |
albumentations==1.3.1
|
| 10 |
+
pdf2image
|
| 11 |
+
Pillow
|