Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import numpy as np | |
| import spaces | |
| import torch | |
| import random | |
| import time | |
| from PIL import Image | |
| from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, FluxTransformer2DModel | |
| from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast, AutoProcessor, pipeline | |
| from huggingface_hub import hf_hub_download | |
| from gradio_client import Client, handle_file | |
| import os | |
| import subprocess | |
| subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
| dtype = torch.bfloat16 | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| # Use the 'waffles' environment variable as the access token | |
| hf_token = os.getenv('waffles') | |
| # Ensure the token is loaded correctly | |
| if not hf_token: | |
| raise ValueError("Hugging Face API token not found. Please set the 'waffles' environment variable.") | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = 2048 | |
| pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16, revision="refs/pr/1", token=hf_token).to(device) | |
| def infer(prompt, seed=0, randomize_seed=True, width=640, height=1024, guidance_scale=0.0, num_inference_steps=5, lora_model="AlekseyCalvin/RCA_Agitprop_Manufactory", progress=gr.Progress(track_tqdm=True)): | |
| global pipe | |
| # Load LoRA if specified | |
| if lora_model: | |
| try: | |
| pipe.load_lora_weights(lora_model) | |
| except Exception as e: | |
| return None, seed, f"Failed to load LoRA model: {str(e)}" | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.Generator().manual_seed(seed) | |
| try: | |
| image = pipe( | |
| prompt=prompt, | |
| width=width, | |
| height=height, | |
| num_inference_steps=num_inference_steps, | |
| generator=generator, | |
| guidance_scale=guidance_scale | |
| ).images[0] | |
| # Unload LoRA weights after generation | |
| if lora_model: | |
| pipe.unload_lora_weights() | |
| return image, prompt, seed, "Image generated successfully." | |
| except Exception as e: | |
| return None, seed, f"Error during image generation: {str(e)}" | |
| return image, prompt, seed | |
| examples = [ | |
| "RCA style communist party poster with the words Ready for REVOLUTION? in large black consistent constructivist font alongside a red Soviet hammer and a red Soviet sickle over the background of planet earth, over the North American continent", | |
| ] | |
| custom_css = """ | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 520px; | |
| } | |
| .input-group, .output-group { | |
| border: 1px solid #eb3109; | |
| border-radius: 10px; | |
| padding: 20px; | |
| margin-bottom: 20px; | |
| background-color: #f9f9f9; | |
| } | |
| .submit-btn { | |
| background-color: #2980b9 !important; | |
| color: white !important; | |
| } | |
| .submit-btn:hover { | |
| background-color: #3498db !important; | |
| } | |
| """ | |
| css=""" | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 520px; | |
| } | |
| """ | |
| with gr.Blocks(css=custom_css, theme=gr.themes.Soft(primary_hue="red", secondary_hue="gray")) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown(f"""# RCA Agitprop Manufactory: pre-phrase prompts with 'RCA style' to activate custom model """) | |
| with gr.Row(): | |
| prompt = gr.Text( | |
| label="Prompt", | |
| show_label=False, | |
| max_lines=2, | |
| placeholder="RCA style communist poster of ", | |
| container=False, | |
| ) | |
| run_button = gr.Button("Run", scale=0) | |
| output_image = gr.Image(label="Result", elem_id="gallery", show_label=False) | |
| with gr.Accordion("Advanced Settings", open=True): | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Row(): | |
| width = gr.Slider( | |
| label="Width", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=640, | |
| ) | |
| height = gr.Slider( | |
| label="Height", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1024, | |
| ) | |
| with gr.Row(): | |
| num_inference_steps = gr.Slider( | |
| label="Number of inference steps", | |
| minimum=1, | |
| maximum=50, | |
| step=1, | |
| value=5, | |
| ) | |
| gr.Examples( | |
| examples = examples, | |
| fn = infer, | |
| inputs = [prompt], | |
| outputs = [output_image, seed], | |
| cache_examples="lazy" | |
| ) | |
| gr.on( | |
| triggers=[run_button.click, prompt.submit], | |
| fn = infer, | |
| inputs = [prompt, seed, randomize_seed, width, height, num_inference_steps], | |
| outputs = [output_image, seed] | |
| ) | |
| demo.launch(debug=True) |