Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,364 Bytes
f3a733b 9247cd4 beb1467 9247cd4 4d4bd5b beb1467 81ddd16 beb1467 4d4bd5b 9247cd4 beb1467 4d4bd5b 9247cd4 4d4bd5b beb1467 9247cd4 beb1467 4d4bd5b beb1467 4d4bd5b 9247cd4 4d4bd5b 9247cd4 4d4bd5b 9247cd4 5060df5 9247cd4 4d4bd5b 5060df5 9247cd4 4d4bd5b 9247cd4 5060df5 9247cd4 4d4bd5b 9247cd4 4d4bd5b 9247cd4 4d4bd5b 9247cd4 4d4bd5b 9247cd4 4d4bd5b 9247cd4 f3a733b 4d4bd5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
import gradio as gr
import numpy as np
import spaces
import torch
import random
import time
from PIL import Image
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, FluxTransformer2DModel
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast, AutoProcessor, pipeline
from huggingface_hub import hf_hub_download
from gradio_client import Client, handle_file
import os
import subprocess
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
# Use the 'waffles' environment variable as the access token
hf_token = os.getenv('waffles')
# Ensure the token is loaded correctly
if not hf_token:
raise ValueError("Hugging Face API token not found. Please set the 'waffles' environment variable.")
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16, revision="refs/pr/1", token=hf_token).to(device)
@spaces.GPU(duration=60)
def infer(prompt, seed=0, randomize_seed=True, width=640, height=1024, guidance_scale=0.0, num_inference_steps=5, lora_model="AlekseyCalvin/RCA_Agitprop_Manufactory", progress=gr.Progress(track_tqdm=True)):
global pipe
# Load LoRA if specified
if lora_model:
try:
pipe.load_lora_weights(lora_model)
except Exception as e:
return None, seed, f"Failed to load LoRA model: {str(e)}"
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
try:
image = pipe(
prompt=prompt,
width=width,
height=height,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=guidance_scale
).images[0]
# Unload LoRA weights after generation
if lora_model:
pipe.unload_lora_weights()
return image, prompt, seed, "Image generated successfully."
except Exception as e:
return None, seed, f"Error during image generation: {str(e)}"
return image, prompt, seed
examples = [
"RCA style communist party poster with the words Ready for REVOLUTION? in large black consistent constructivist font alongside a red Soviet hammer and a red Soviet sickle over the background of planet earth, over the North American continent",
]
custom_css = """
#col-container {
margin: 0 auto;
max-width: 520px;
}
.input-group, .output-group {
border: 1px solid #eb3109;
border-radius: 10px;
padding: 20px;
margin-bottom: 20px;
background-color: #f9f9f9;
}
.submit-btn {
background-color: #2980b9 !important;
color: white !important;
}
.submit-btn:hover {
background-color: #3498db !important;
}
"""
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=custom_css, theme=gr.themes.Soft(primary_hue="red", secondary_hue="gray")) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# RCA Agitprop Manufactory: pre-phrase prompts with 'RCA style' to activate custom model """)
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=2,
placeholder="RCA style communist poster of ",
container=False,
)
run_button = gr.Button("Run", scale=0)
output_image = gr.Image(label="Result", elem_id="gallery", show_label=False)
with gr.Accordion("Advanced Settings", open=True):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=640,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=5,
)
gr.Examples(
examples = examples,
fn = infer,
inputs = [prompt],
outputs = [output_image, seed],
cache_examples="lazy"
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn = infer,
inputs = [prompt, seed, randomize_seed, width, height, num_inference_steps],
outputs = [output_image, seed]
)
demo.launch(debug=True) |