Spaces:
Sleeping
Sleeping
Alex Black
commited on
Commit
·
bd0a3d5
1
Parent(s):
b704fa2
Streamlit upload
Browse files
app.py
ADDED
|
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import matplotlib.pyplot as plt
|
| 2 |
+
import numpy as np
|
| 3 |
+
import streamlit as st
|
| 4 |
+
import torch
|
| 5 |
+
from huggingface_hub import PyTorchModelHubMixin
|
| 6 |
+
from PIL import Image
|
| 7 |
+
from torchvision import transforms
|
| 8 |
+
from torchvision.transforms.functional import to_pil_image
|
| 9 |
+
|
| 10 |
+
from model import ICN
|
| 11 |
+
|
| 12 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def mask_processing(x):
|
| 16 |
+
if x > 90:
|
| 17 |
+
return 140
|
| 18 |
+
elif x < 80:
|
| 19 |
+
return 0
|
| 20 |
+
else:
|
| 21 |
+
return 255
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def grid_to_heatmap(grid, size=1024):
|
| 25 |
+
mask = to_pil_image(grid.view(7, 7))
|
| 26 |
+
mask = mask.resize((size, size), Image.BICUBIC)
|
| 27 |
+
mask = Image.eval(mask, mask_processing)
|
| 28 |
+
|
| 29 |
+
colormap = plt.get_cmap("Wistia")
|
| 30 |
+
heatmap = np.array(colormap(mask))
|
| 31 |
+
heatmap = (heatmap * 255).astype(np.uint8)
|
| 32 |
+
heatmap = Image.fromarray(heatmap)
|
| 33 |
+
|
| 34 |
+
return heatmap, mask
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def summary_image(img, fake, prediction):
|
| 38 |
+
prediction -= prediction.min()
|
| 39 |
+
prediction = prediction / prediction.max()
|
| 40 |
+
|
| 41 |
+
size = 1024
|
| 42 |
+
|
| 43 |
+
img1 = img.resize((size, size))
|
| 44 |
+
img2 = fake.resize((size, size))
|
| 45 |
+
|
| 46 |
+
heatmap, mask = grid_to_heatmap(prediction)
|
| 47 |
+
img1.paste(heatmap, (0, 0), mask)
|
| 48 |
+
img2.paste(heatmap, (0, 0), mask)
|
| 49 |
+
|
| 50 |
+
return img1, img2
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
@st.cache_resource
|
| 54 |
+
def load_model():
|
| 55 |
+
model = torch.jit.load("traced_model.pt")
|
| 56 |
+
model.eval().to(device)
|
| 57 |
+
return model
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
model = ICN.from_pretrained("AlexBlck/image-comparator").eval().to(device)
|
| 61 |
+
|
| 62 |
+
# model = load_model()
|
| 63 |
+
|
| 64 |
+
st.title("Image Comparator Network")
|
| 65 |
+
|
| 66 |
+
st.write("## Upload a pair of images")
|
| 67 |
+
cols = st.columns(2)
|
| 68 |
+
with cols[0]:
|
| 69 |
+
im1 = st.file_uploader("Image 1", type=["jpg", "png"])
|
| 70 |
+
with cols[1]:
|
| 71 |
+
im2 = st.file_uploader("Image 2", type=["jpg", "png"])
|
| 72 |
+
|
| 73 |
+
if not (im1 and im2):
|
| 74 |
+
st.stop()
|
| 75 |
+
|
| 76 |
+
btn = st.button("Run")
|
| 77 |
+
if not btn:
|
| 78 |
+
st.stop()
|
| 79 |
+
|
| 80 |
+
im1 = Image.open(im1).convert("RGB")
|
| 81 |
+
im2 = Image.open(im2).convert("RGB")
|
| 82 |
+
|
| 83 |
+
tr = transforms.Compose(
|
| 84 |
+
[
|
| 85 |
+
transforms.Resize(size=(224, 224)),
|
| 86 |
+
transforms.ToTensor(),
|
| 87 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
| 88 |
+
]
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
img = torch.vstack((tr(im1), tr(im2))).unsqueeze(0)
|
| 92 |
+
|
| 93 |
+
heatmap, cl = model(img.to(device))
|
| 94 |
+
confs = torch.softmax(cl, dim=1)
|
| 95 |
+
pred = torch.argmax(confs, dim=1).item()
|
| 96 |
+
|
| 97 |
+
if pred == 0:
|
| 98 |
+
st.success("No Manipulation Detected")
|
| 99 |
+
heatmap *= 0
|
| 100 |
+
elif pred == 1:
|
| 101 |
+
st.warning("Manipulation Detected!")
|
| 102 |
+
else:
|
| 103 |
+
st.error("Images are not related.")
|
| 104 |
+
heatmap *= 0
|
| 105 |
+
|
| 106 |
+
img1, img2 = summary_image(im1, im2, heatmap[0])
|
| 107 |
+
cols = st.columns(2)
|
| 108 |
+
with cols[0]:
|
| 109 |
+
st.image(img1)
|
| 110 |
+
with cols[1]:
|
| 111 |
+
st.image(img2)
|
model.py
ADDED
|
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn.functional as F
|
| 3 |
+
from huggingface_hub import PyTorchModelHubMixin
|
| 4 |
+
from torch import nn
|
| 5 |
+
from torchvision import models
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class ICN(nn.Module, PyTorchModelHubMixin):
|
| 9 |
+
def __init__(self):
|
| 10 |
+
super().__init__()
|
| 11 |
+
|
| 12 |
+
cnn = models.resnet50(pretrained=False)
|
| 13 |
+
self.cnn_head = nn.Sequential(
|
| 14 |
+
*list(cnn.children())[:4],
|
| 15 |
+
*list(list(list(cnn.children())[4].children())[0].children())[:4],
|
| 16 |
+
)
|
| 17 |
+
self.cnn_tail = nn.Sequential(
|
| 18 |
+
*list(list(cnn.children())[4].children()
|
| 19 |
+
)[1:], *list(cnn.children())[5:-2]
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
self.conv1 = nn.Conv2d(128, 256, 3, padding=1)
|
| 23 |
+
self.bn1 = nn.BatchNorm2d(num_features=256)
|
| 24 |
+
|
| 25 |
+
self.fc1 = nn.Linear(2048 * 7 * 7, 256)
|
| 26 |
+
self.fc2 = nn.Linear(256, 7 * 7)
|
| 27 |
+
|
| 28 |
+
self.cls_fc = nn.Linear(256, 3)
|
| 29 |
+
|
| 30 |
+
self.criterion = nn.CrossEntropyLoss()
|
| 31 |
+
|
| 32 |
+
def forward(self, x):
|
| 33 |
+
# Input: [-1, 6, 224, 224]
|
| 34 |
+
real = x[:, :3, :, :]
|
| 35 |
+
fake = x[:, 3:, :, :]
|
| 36 |
+
|
| 37 |
+
# Push both images through pretrained backbone
|
| 38 |
+
real_features = F.relu(self.cnn_head(real)) # [-1, 64, 56, 56]
|
| 39 |
+
fake_features = F.relu(self.cnn_head(fake)) # [-1, 64, 56, 56]
|
| 40 |
+
|
| 41 |
+
# [-1, 128, 56, 56]
|
| 42 |
+
combined = torch.cat((real_features, fake_features), 1)
|
| 43 |
+
|
| 44 |
+
x = self.conv1(combined) # [-1, 256, 56, 56]
|
| 45 |
+
x = self.bn1(x)
|
| 46 |
+
x = F.relu(x)
|
| 47 |
+
|
| 48 |
+
x = self.cnn_tail(x)
|
| 49 |
+
x = x.view(-1, 2048 * 7 * 7)
|
| 50 |
+
|
| 51 |
+
# Final feature [-1, 256]
|
| 52 |
+
d = F.relu(self.fc1(x))
|
| 53 |
+
|
| 54 |
+
# Heatmap [-1, 49]
|
| 55 |
+
grid = self.fc2(d)
|
| 56 |
+
|
| 57 |
+
# Classifier [-1, 1]
|
| 58 |
+
cl = self.cls_fc(d)
|
| 59 |
+
|
| 60 |
+
return grid, cl
|