Spaces:
Running
Running
| from typing import Tuple | |
| import logging | |
| import spacy | |
| from presidio_analyzer import RecognizerRegistry | |
| from presidio_analyzer.nlp_engine import NlpEngine, NlpEngineProvider | |
| from transformers_class import TransformerRecognizer | |
| logger = logging.getLogger("presidio-streamlit") | |
| def create_nlp_engine_with_spacy( | |
| model_path: str, | |
| ) -> Tuple[NlpEngine, RecognizerRegistry]: | |
| """ | |
| Instantiate an NlpEngine with a spaCy model | |
| :param model_path: spaCy model path. | |
| """ | |
| if not spacy.util.is_package(model_path): | |
| spacy.cli.download(model_path) | |
| nlp_configuration = { | |
| "nlp_engine_name": "spacy", | |
| "models": [{"lang_code": model_path.split('_')[0], "model_name": model_path}], | |
| } | |
| nlp_engine = NlpEngineProvider(nlp_configuration=nlp_configuration).create_engine() | |
| registry = RecognizerRegistry() | |
| # registry.load_predefined_recognizers() | |
| registry.load_predefined_recognizers(nlp_engine=nlp_engine, languages=["fr", "en"]) | |
| registry.add_recognizers_from_yaml("recognizers.yaml") | |
| return nlp_engine, registry | |
| def create_nlp_engine_with_transformers( | |
| model_path: str, | |
| ) -> Tuple[NlpEngine, RecognizerRegistry]: | |
| """ | |
| Instantiate an NlpEngine with a TransformersRecognizer and a small spaCy model. | |
| The TransformersRecognizer would return results from Transformers models, the spaCy model | |
| would return NlpArtifacts such as POS and lemmas. | |
| :param model_path: HuggingFace model path. | |
| """ | |
| # if not spacy.util.is_package("en_core_web_sm"): | |
| # spacy.cli.download("en_core_web_sm") | |
| # # Using a small spaCy model + a HF NER model | |
| # transformers_recognizer = TransformersRecognizer(model_path=model_path) | |
| # | |
| # if model_path == "StanfordAIMI/stanford-deidentifier-base": | |
| # transformers_recognizer.load_transformer(**STANFORD_COFIGURATION) | |
| # elif model_path == "obi/deid_roberta_i2b2": | |
| # transformers_recognizer.load_transformer(**BERT_DEID_CONFIGURATION) | |
| # else: | |
| # print(f"Warning: Model has no configuration, loading default.") | |
| # transformers_recognizer.load_transformer(**BERT_DEID_CONFIGURATION) | |
| # Use small spaCy model, no need for both spacy and HF models | |
| # The transformers model is used here as a recognizer, not as an NlpEngine | |
| if not spacy.util.is_package(model_path): | |
| spacy.cli.download(model_path) | |
| nlp_configuration = { | |
| "nlp_engine_name": "spacy", | |
| "models": [{"lang_code": model_path.split('_')[0], "model_name": model_path}], | |
| } | |
| nlp_engine = NlpEngineProvider(nlp_configuration=nlp_configuration).create_engine() | |
| registry = RecognizerRegistry() | |
| registry = load_predefined_recognizers(registry) | |
| mapping_labels = {"PER": "PERSON", 'LOC': 'LOCATION'} | |
| model_name = "AliaeAI/camembert_anonymizer_production_v2" # "Jean-Baptiste/camembert-ner" , "AliaeAI/camembert_anonymizer_production" | |
| transformers_recognizer = TransformerRecognizer(model_name, mapping_labels) | |
| registry.add_recognizer(transformers_recognizer) | |
| registry.remove_recognizer("SpacyRecognizer") | |
| return nlp_engine, registry | |
| from presidio_analyzer.predefined_recognizers import PhoneRecognizer, EmailRecognizer, CreditCardRecognizer, CryptoRecognizer, DateRecognizer, IpRecognizer, IbanRecognizer, UrlRecognizer | |
| import phonenumbers | |
| def load_predefined_recognizers(registry, lang='fr'): | |
| # phone number | |
| phone_recognizer_fr = PhoneRecognizer(supported_language=lang, supported_regions=phonenumbers.SUPPORTED_REGIONS,context=['téléphone']) | |
| registry.add_recognizer(phone_recognizer_fr) | |
| email_recognizer_fr = EmailRecognizer(supported_language=lang, context=["email", "mail", "e-mail"]) | |
| registry.add_recognizer(email_recognizer_fr) | |
| # credit card | |
| creditcard_recognizer_fr = CreditCardRecognizer(supported_language=lang,context=["crédit", "carte", "carte de crédit"]) | |
| registry.add_recognizer(creditcard_recognizer_fr) | |
| # crypto | |
| crypto_recognizer_fr = CryptoRecognizer(supported_language=lang, context=["crypto"]) | |
| registry.add_recognizer(crypto_recognizer_fr) | |
| # date time | |
| date_recognizer_fr = DateRecognizer(supported_language=lang, context=["mois", "date", "jour", "année"]) | |
| registry.add_recognizer(date_recognizer_fr) | |
| # ip address | |
| ip_recognizer_fr = IpRecognizer(supported_language=lang, context=["IP", "ip"]) | |
| registry.add_recognizer(ip_recognizer_fr) | |
| # iban | |
| iban_recognizer_fr = IbanRecognizer(supported_language=lang, context = ["IBAN", "iban", "bancaire", "compte"]) | |
| registry.add_recognizer(iban_recognizer_fr) | |
| # URL | |
| url_recognizer_fr = UrlRecognizer(supported_language=lang, context = ["site", "web"]) | |
| registry.add_recognizer(url_recognizer_fr) | |
| # load from yaml | |
| registry.add_recognizers_from_yaml("recognizers.yaml") | |
| return registry | |