Spaces:
Build error
Build error
| import inspect | |
| import math | |
| from dataclasses import dataclass | |
| from typing import Dict, List, Optional, Tuple, Union | |
| import numpy as np | |
| import PIL | |
| import torch | |
| from diffusers import ( | |
| AutoencoderKLCogVideoX, | |
| CogVideoXDPMScheduler, | |
| CogVideoXImageToVideoPipeline, | |
| CogVideoXTransformer3DModel, | |
| ) | |
| from diffusers.image_processor import PipelineImageInput | |
| from diffusers.models.embeddings import get_1d_rotary_pos_embed | |
| from diffusers.utils import BaseOutput | |
| from diffusers.utils.torch_utils import randn_tensor | |
| from einops import rearrange | |
| from transformers import AutoTokenizer, T5EncoderModel | |
| from aether.utils.preprocess_utils import imcrop_center | |
| def get_3d_rotary_pos_embed( | |
| embed_dim, | |
| crops_coords, | |
| grid_size, | |
| temporal_size, | |
| theta: int = 10000, | |
| use_real: bool = True, | |
| grid_type: str = "linspace", | |
| max_size: Optional[Tuple[int, int]] = None, | |
| device: Optional[torch.device] = None, | |
| fps_factor: Optional[float] = 1.0, | |
| ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: | |
| """ | |
| RoPE for video tokens with 3D structure. | |
| Args: | |
| embed_dim: (`int`): | |
| The embedding dimension size, corresponding to hidden_size_head. | |
| crops_coords (`Tuple[int]`): | |
| The top-left and bottom-right coordinates of the crop. | |
| grid_size (`Tuple[int]`): | |
| The grid size of the spatial positional embedding (height, width). | |
| temporal_size (`int`): | |
| The size of the temporal dimension. | |
| theta (`float`): | |
| Scaling factor for frequency computation. | |
| grid_type (`str`): | |
| Whether to use "linspace" or "slice" to compute grids. | |
| fps_factor (`float`): | |
| The relative fps factor of the video, computed by base_fps / fps. Useful for variable fps training. | |
| Returns: | |
| `torch.Tensor`: positional embedding with shape `(temporal_size * grid_size[0] * grid_size[1], embed_dim/2)`. | |
| """ | |
| if use_real is not True: | |
| raise ValueError( | |
| " `use_real = False` is not currently supported for get_3d_rotary_pos_embed" | |
| ) | |
| if grid_type == "linspace": | |
| start, stop = crops_coords | |
| grid_size_h, grid_size_w = grid_size | |
| grid_h = torch.linspace( | |
| start[0], | |
| stop[0] * (grid_size_h - 1) / grid_size_h, | |
| grid_size_h, | |
| device=device, | |
| dtype=torch.float32, | |
| ) | |
| grid_w = torch.linspace( | |
| start[1], | |
| stop[1] * (grid_size_w - 1) / grid_size_w, | |
| grid_size_w, | |
| device=device, | |
| dtype=torch.float32, | |
| ) | |
| grid_t = ( | |
| torch.linspace( | |
| 0, | |
| temporal_size * (temporal_size - 1) / temporal_size, | |
| temporal_size, | |
| device=device, | |
| dtype=torch.float32, | |
| ) | |
| * fps_factor | |
| ) | |
| elif grid_type == "slice": | |
| max_h, max_w = max_size | |
| grid_size_h, grid_size_w = grid_size | |
| grid_h = torch.arange(max_h, device=device, dtype=torch.float32) | |
| grid_w = torch.arange(max_w, device=device, dtype=torch.float32) | |
| grid_t = ( | |
| torch.arange(temporal_size, device=device, dtype=torch.float32) * fps_factor | |
| ) | |
| else: | |
| raise ValueError("Invalid value passed for `grid_type`.") | |
| # Compute dimensions for each axis | |
| dim_t = embed_dim // 4 | |
| dim_h = embed_dim // 8 * 3 | |
| dim_w = embed_dim // 8 * 3 | |
| # Temporal frequencies | |
| freqs_t = get_1d_rotary_pos_embed(dim_t, grid_t, theta=theta, use_real=True) | |
| # Spatial frequencies for height and width | |
| freqs_h = get_1d_rotary_pos_embed(dim_h, grid_h, theta=theta, use_real=True) | |
| freqs_w = get_1d_rotary_pos_embed(dim_w, grid_w, theta=theta, use_real=True) | |
| # BroadCast and concatenate temporal and spaial frequencie (height and width) into a 3d tensor | |
| def combine_time_height_width(freqs_t, freqs_h, freqs_w): | |
| freqs_t = freqs_t[:, None, None, :].expand( | |
| -1, grid_size_h, grid_size_w, -1 | |
| ) # temporal_size, grid_size_h, grid_size_w, dim_t | |
| freqs_h = freqs_h[None, :, None, :].expand( | |
| temporal_size, -1, grid_size_w, -1 | |
| ) # temporal_size, grid_size_h, grid_size_2, dim_h | |
| freqs_w = freqs_w[None, None, :, :].expand( | |
| temporal_size, grid_size_h, -1, -1 | |
| ) # temporal_size, grid_size_h, grid_size_2, dim_w | |
| freqs = torch.cat( | |
| [freqs_t, freqs_h, freqs_w], dim=-1 | |
| ) # temporal_size, grid_size_h, grid_size_w, (dim_t + dim_h + dim_w) | |
| freqs = freqs.view( | |
| temporal_size * grid_size_h * grid_size_w, -1 | |
| ) # (temporal_size * grid_size_h * grid_size_w), (dim_t + dim_h + dim_w) | |
| return freqs | |
| t_cos, t_sin = freqs_t # both t_cos and t_sin has shape: temporal_size, dim_t | |
| h_cos, h_sin = freqs_h # both h_cos and h_sin has shape: grid_size_h, dim_h | |
| w_cos, w_sin = freqs_w # both w_cos and w_sin has shape: grid_size_w, dim_w | |
| if grid_type == "slice": | |
| t_cos, t_sin = t_cos[:temporal_size], t_sin[:temporal_size] | |
| h_cos, h_sin = h_cos[:grid_size_h], h_sin[:grid_size_h] | |
| w_cos, w_sin = w_cos[:grid_size_w], w_sin[:grid_size_w] | |
| cos = combine_time_height_width(t_cos, h_cos, w_cos) | |
| sin = combine_time_height_width(t_sin, h_sin, w_sin) | |
| return cos, sin | |
| # Similar to diffusers.pipelines.hunyuandit.pipeline_hunyuandit.get_resize_crop_region_for_grid | |
| def get_resize_crop_region_for_grid(src, tgt_width, tgt_height): | |
| tw = tgt_width | |
| th = tgt_height | |
| h, w = src | |
| r = h / w | |
| if r > (th / tw): | |
| resize_height = th | |
| resize_width = int(round(th / h * w)) | |
| else: | |
| resize_width = tw | |
| resize_height = int(round(tw / w * h)) | |
| crop_top = int(round((th - resize_height) / 2.0)) | |
| crop_left = int(round((tw - resize_width) / 2.0)) | |
| return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width) | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps | |
| def retrieve_timesteps( | |
| scheduler, | |
| num_inference_steps: Optional[int] = None, | |
| device: Optional[Union[str, torch.device]] = None, | |
| timesteps: Optional[List[int]] = None, | |
| sigmas: Optional[List[float]] = None, | |
| **kwargs, | |
| ): | |
| r""" | |
| Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles | |
| custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. | |
| Args: | |
| scheduler (`SchedulerMixin`): | |
| The scheduler to get timesteps from. | |
| num_inference_steps (`int`): | |
| The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` | |
| must be `None`. | |
| device (`str` or `torch.device`, *optional*): | |
| The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
| timesteps (`List[int]`, *optional*): | |
| Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, | |
| `num_inference_steps` and `sigmas` must be `None`. | |
| sigmas (`List[float]`, *optional*): | |
| Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, | |
| `num_inference_steps` and `timesteps` must be `None`. | |
| Returns: | |
| `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the | |
| second element is the number of inference steps. | |
| """ | |
| if timesteps is not None and sigmas is not None: | |
| raise ValueError( | |
| "Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values" | |
| ) | |
| if timesteps is not None: | |
| accepts_timesteps = "timesteps" in set( | |
| inspect.signature(scheduler.set_timesteps).parameters.keys() | |
| ) | |
| if not accepts_timesteps: | |
| raise ValueError( | |
| f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
| f" timestep schedules. Please check whether you are using the correct scheduler." | |
| ) | |
| scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| num_inference_steps = len(timesteps) | |
| elif sigmas is not None: | |
| accept_sigmas = "sigmas" in set( | |
| inspect.signature(scheduler.set_timesteps).parameters.keys() | |
| ) | |
| if not accept_sigmas: | |
| raise ValueError( | |
| f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
| f" sigmas schedules. Please check whether you are using the correct scheduler." | |
| ) | |
| scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| num_inference_steps = len(timesteps) | |
| else: | |
| scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| return timesteps, num_inference_steps | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents | |
| def retrieve_latents( | |
| encoder_output: torch.Tensor, | |
| generator: Optional[torch.Generator] = None, | |
| sample_mode: str = "sample", | |
| ): | |
| if hasattr(encoder_output, "latent_dist") and sample_mode == "sample": | |
| return encoder_output.latent_dist.sample(generator) | |
| elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax": | |
| return encoder_output.latent_dist.mode() | |
| elif hasattr(encoder_output, "latents"): | |
| return encoder_output.latents | |
| else: | |
| raise AttributeError("Could not access latents of provided encoder_output") | |
| class AetherV1PipelineOutput(BaseOutput): | |
| rgb: np.ndarray | |
| disparity: np.ndarray | |
| raymap: np.ndarray | |
| class AetherV1PipelineCogVideoX(CogVideoXImageToVideoPipeline): | |
| _supported_tasks = ["reconstruction", "prediction", "planning"] | |
| _default_num_inference_steps = { | |
| "reconstruction": 4, | |
| "prediction": 50, | |
| "planning": 50, | |
| } | |
| _default_guidance_scale = { | |
| "reconstruction": 1.0, | |
| "prediction": 3.0, | |
| "planning": 3.0, | |
| } | |
| _default_use_dynamic_cfg = { | |
| "reconstruction": False, | |
| "prediction": True, | |
| "planning": True, | |
| } | |
| _base_fps = 12 | |
| def __init__( | |
| self, | |
| tokenizer: AutoTokenizer, | |
| text_encoder: T5EncoderModel, | |
| vae: AutoencoderKLCogVideoX, | |
| scheduler: CogVideoXDPMScheduler, | |
| transformer: CogVideoXTransformer3DModel, | |
| ): | |
| super().__init__( | |
| tokenizer=tokenizer, | |
| text_encoder=text_encoder, | |
| vae=vae, | |
| scheduler=scheduler, | |
| transformer=transformer, | |
| ) | |
| self.empty_prompt_embeds, _ = self.encode_prompt( | |
| prompt="", | |
| negative_prompt=None, | |
| do_classifier_free_guidance=False, | |
| num_videos_per_prompt=1, | |
| prompt_embeds=None, | |
| ) | |
| self.empty_prompt_embeds = self.empty_prompt_embeds.to(dtype=torch.bfloat16) | |
| def _prepare_rotary_positional_embeddings( | |
| self, | |
| height: int, | |
| width: int, | |
| num_frames: int, | |
| device: torch.device, | |
| fps: Optional[int] = None, | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| grid_height = height // ( | |
| self.vae_scale_factor_spatial * self.transformer.config.patch_size | |
| ) | |
| grid_width = width // ( | |
| self.vae_scale_factor_spatial * self.transformer.config.patch_size | |
| ) | |
| p = self.transformer.config.patch_size | |
| p_t = self.transformer.config.patch_size_t | |
| base_size_width = self.transformer.config.sample_width // p | |
| base_size_height = self.transformer.config.sample_height // p | |
| if p_t is None: | |
| # CogVideoX 1.0 | |
| grid_crops_coords = get_resize_crop_region_for_grid( | |
| (grid_height, grid_width), base_size_width, base_size_height | |
| ) | |
| freqs_cos, freqs_sin = get_3d_rotary_pos_embed( | |
| embed_dim=self.transformer.config.attention_head_dim, | |
| crops_coords=grid_crops_coords, | |
| grid_size=(grid_height, grid_width), | |
| temporal_size=num_frames, | |
| device=device, | |
| fps_factor=self._base_fps / fps, | |
| ) | |
| else: | |
| # CogVideoX 1.5 | |
| base_num_frames = (num_frames + p_t - 1) // p_t | |
| freqs_cos, freqs_sin = get_3d_rotary_pos_embed( | |
| embed_dim=self.transformer.config.attention_head_dim, | |
| crops_coords=None, | |
| grid_size=(grid_height, grid_width), | |
| temporal_size=base_num_frames, | |
| grid_type="slice", | |
| max_size=(base_size_height, base_size_width), | |
| device=device, | |
| fps_factor=self._base_fps / fps, | |
| ) | |
| return freqs_cos, freqs_sin | |
| def check_inputs( | |
| self, | |
| task, | |
| image, | |
| video, | |
| goal, | |
| raymap, | |
| height, | |
| width, | |
| num_frames, | |
| fps, | |
| ): | |
| if task not in self._supported_tasks: | |
| raise ValueError(f"`task` has to be one of {self._supported_tasks}.") | |
| if image is None and video is None: | |
| raise ValueError("`image` or `video` has to be provided.") | |
| if image is not None and video is not None: | |
| raise ValueError("`image` and `video` cannot both be provided.") | |
| if image is not None: | |
| if task == "reconstruction": | |
| raise ValueError("`image` is not supported for `reconstruction` task.") | |
| if ( | |
| not isinstance(image, torch.Tensor) | |
| and not isinstance(image, np.ndarray) | |
| and not isinstance(image, PIL.Image.Image) | |
| ): | |
| raise ValueError( | |
| "`image` has to be of type `torch.Tensor` or `np.ndarray` or `PIL.Image.Image` but is" | |
| f" {type(image)}" | |
| ) | |
| if goal is not None: | |
| if task != "planning": | |
| raise ValueError("`goal` is only supported for `planning` task.") | |
| if ( | |
| not isinstance(goal, torch.Tensor) | |
| and not isinstance(goal, np.ndarray) | |
| and not isinstance(goal, PIL.Image.Image) | |
| ): | |
| raise ValueError( | |
| "`goal` has to be of type `torch.Tensor` or `np.ndarray` or `PIL.Image.Image` but is" | |
| f" {type(goal)}" | |
| ) | |
| if video is not None: | |
| if task != "reconstruction": | |
| raise ValueError("`video` is only supported for `reconstruction` task.") | |
| if ( | |
| not isinstance(video, torch.Tensor) | |
| and not isinstance(video, np.ndarray) | |
| and not ( | |
| isinstance(video, list) | |
| and all(isinstance(v, PIL.Image.Image) for v in video) | |
| ) | |
| ): | |
| raise ValueError( | |
| "`video` has to be of type `torch.Tensor` or `np.ndarray` or `List[PIL.Image.Image]` but is" | |
| f" {type(video)}" | |
| ) | |
| if height % 8 != 0 or width % 8 != 0: | |
| raise ValueError( | |
| f"`height` and `width` have to be divisible by 8 but are {height} and {width}." | |
| ) | |
| if num_frames is None: | |
| raise ValueError("`num_frames` is required.") | |
| if num_frames not in [17, 25, 33, 41]: | |
| raise ValueError("`num_frames` has to be one of [17, 25, 33, 41].") | |
| if fps not in [8, 10, 12, 15, 24]: | |
| raise ValueError("`fps` has to be one of [8, 10, 12, 15, 24].") | |
| if ( | |
| raymap is not None | |
| and not isinstance(raymap, torch.Tensor) | |
| and not isinstance(raymap, np.ndarray) | |
| ): | |
| raise ValueError( | |
| "`raymap` has to be of type `torch.Tensor` or `np.ndarray`." | |
| ) | |
| if raymap is not None: | |
| if raymap.shape[-4:] != ( | |
| num_frames, | |
| 6, | |
| height // self.vae_scale_factor_spatial, | |
| width // self.vae_scale_factor_spatial, | |
| ): | |
| raise ValueError( | |
| f"`raymap` shape is not correct. " | |
| f"Expected {num_frames, 6, height // self.vae_scale_factor_spatial, width // self.vae_scale_factor_spatial}, " | |
| f"got {raymap.shape}." | |
| ) | |
| def _preprocess_image(self, image, height, width): | |
| if isinstance(image, torch.Tensor): | |
| image = image.cpu().numpy() | |
| if image.dtype == np.uint8: | |
| image = image.astype(np.float32) / 255.0 | |
| if image.ndim == 3: | |
| image = [image] | |
| image = imcrop_center(image, height, width) | |
| image = self.video_processor.preprocess(image, height, width) | |
| return image | |
| def preprocess_inputs( | |
| self, | |
| image, | |
| goal, | |
| video, | |
| raymap, | |
| height, | |
| width, | |
| num_frames, | |
| ): | |
| if image is not None: | |
| if isinstance(image, PIL.Image.Image): | |
| image = self.video_processor.preprocess( | |
| image, height, width, resize_mode="crop" | |
| ).to(device=self._execution_device, dtype=torch.bfloat16) | |
| else: | |
| image = self._preprocess_image(image, height, width).to( | |
| device=self._execution_device, dtype=torch.bfloat16 | |
| ) | |
| if goal is not None: | |
| if isinstance(goal, PIL.Image.Image): | |
| goal = self.video_processor.preprocess( | |
| goal, height, width, resize_mode="crop" | |
| ).to(device=self._execution_device, dtype=torch.bfloat16) | |
| else: | |
| goal = self._preprocess_image(goal, height, width).to( | |
| device=self._execution_device, dtype=torch.bfloat16 | |
| ) | |
| if video is not None: | |
| if isinstance(video, list) and all( | |
| isinstance(v, PIL.Image.Image) for v in video | |
| ): | |
| video = self.video_processor.preprocess( | |
| video, height, width, resize_mode="crop" | |
| ).to(device=self._execution_device, dtype=torch.bfloat16) | |
| else: | |
| video = self._preprocess_image(video, height, width).to( | |
| device=self._execution_device, dtype=torch.bfloat16 | |
| ) | |
| # TODO: check raymap shape | |
| if raymap is not None: | |
| if isinstance(raymap, np.ndarray): | |
| raymap = torch.from_numpy(raymap).to( | |
| self._execution_device, dtype=torch.bfloat16 | |
| ) | |
| if raymap.ndim == 4: | |
| raymap = raymap.unsqueeze(0).to( | |
| self._execution_device, dtype=torch.bfloat16 | |
| ) | |
| return image, goal, video, raymap | |
| def prepare_latents( | |
| self, | |
| image: Optional[torch.Tensor] = None, | |
| goal: Optional[torch.Tensor] = None, | |
| video: Optional[torch.Tensor] = None, | |
| raymap: Optional[torch.Tensor] = None, | |
| batch_size: int = 1, | |
| num_frames: int = 13, | |
| height: int = 60, | |
| width: int = 90, | |
| dtype: Optional[torch.dtype] = None, | |
| device: Optional[torch.device] = None, | |
| generator: Optional[torch.Generator] = None, | |
| ): | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| num_frames = (num_frames - 1) // self.vae_scale_factor_temporal + 1 | |
| shape = ( | |
| batch_size, | |
| num_frames, | |
| 56, | |
| height // self.vae_scale_factor_spatial, | |
| width // self.vae_scale_factor_spatial, | |
| ) | |
| # For CogVideoX1.5, the latent should add 1 for padding (Not use) | |
| if self.transformer.config.patch_size_t is not None: | |
| shape = ( | |
| shape[:1] | |
| + (shape[1] + shape[1] % self.transformer.config.patch_size_t,) | |
| + shape[2:] | |
| ) | |
| if image is not None: | |
| image = image.unsqueeze(2) | |
| if isinstance(generator, list): | |
| image_latents = [ | |
| retrieve_latents( | |
| self.vae.encode(image[i].unsqueeze(0)), generator[i] | |
| ) | |
| for i in range(batch_size) | |
| ] | |
| else: | |
| image_latents = [ | |
| retrieve_latents(self.vae.encode(img.unsqueeze(0)), generator) | |
| for img in image | |
| ] | |
| image_latents = ( | |
| torch.cat(image_latents, dim=0).to(dtype).permute(0, 2, 1, 3, 4) | |
| ) # [B, F, C, H, W] | |
| if not self.vae.config.invert_scale_latents: | |
| image_latents = self.vae_scaling_factor_image * image_latents | |
| else: | |
| # This is awkward but required because the CogVideoX team forgot to multiply the | |
| # scaling factor during training :) | |
| image_latents = 1 / self.vae_scaling_factor_image * image_latents | |
| if goal is not None: | |
| goal = goal.unsqueeze(2) | |
| if isinstance(generator, list): | |
| goal_latents = [ | |
| retrieve_latents( | |
| self.vae.encode(goal[i].unsqueeze(0)), generator[i] | |
| ) | |
| for i in range(batch_size) | |
| ] | |
| else: | |
| goal_latents = [ | |
| retrieve_latents(self.vae.encode(img.unsqueeze(0)), generator) | |
| for img in goal | |
| ] | |
| goal_latents = ( | |
| torch.cat(goal_latents, dim=0).to(dtype).permute(0, 2, 1, 3, 4) | |
| ) # [B, F, C, H, W] | |
| if not self.vae.config.invert_scale_latents: | |
| goal_latents = self.vae_scaling_factor_image * goal_latents | |
| else: | |
| # This is awkward but required because the CogVideoX team forgot to multiply the | |
| # scaling factor during training :) | |
| goal_latents = 1 / self.vae_scaling_factor_image * goal_latents | |
| if video is not None: | |
| if video.ndim == 4: | |
| video = video.unsqueeze(0) | |
| video = video.permute(0, 2, 1, 3, 4) | |
| if isinstance(generator, list): | |
| video_latents = [ | |
| retrieve_latents( | |
| self.vae.encode(video[i].unsqueeze(0)), generator[i] | |
| ) | |
| for i in range(batch_size) | |
| ] | |
| else: | |
| video_latents = [ | |
| retrieve_latents(self.vae.encode(img.unsqueeze(0)), generator) | |
| for img in video | |
| ] | |
| video_latents = ( | |
| torch.cat(video_latents, dim=0).to(dtype).permute(0, 2, 1, 3, 4) | |
| ) # [B, F, C, H, W] | |
| if not self.vae.config.invert_scale_latents: | |
| video_latents = self.vae_scaling_factor_image * video_latents | |
| else: | |
| # This is awkward but required because the CogVideoX team forgot to multiply the | |
| # scaling factor during training :) | |
| video_latents = 1 / self.vae_scaling_factor_image * video_latents | |
| if image is not None and goal is None: | |
| padding_shape = ( | |
| batch_size, | |
| num_frames - image_latents.shape[1], | |
| *image_latents.shape[2:], | |
| ) | |
| padding = torch.zeros(padding_shape, device=device, dtype=dtype) | |
| condition_latents = torch.cat([image_latents, padding], dim=1) | |
| elif goal is not None: | |
| padding_shape = ( | |
| batch_size, | |
| num_frames - goal_latents.shape[1] - image_latents.shape[1], | |
| *image_latents.shape[2:], | |
| ) | |
| padding = torch.zeros(padding_shape, device=device, dtype=dtype) | |
| condition_latents = torch.cat([image_latents, padding, goal_latents], dim=1) | |
| elif video is not None: | |
| condition_latents = video_latents | |
| if raymap is not None: | |
| if raymap.shape[1] % self.vae_scale_factor_temporal != 0: | |
| # repeat | |
| raymap = torch.cat( | |
| [ | |
| raymap[ | |
| :, | |
| : self.vae_scale_factor_temporal | |
| - raymap.shape[1] % self.vae_scale_factor_temporal, | |
| ], | |
| raymap, | |
| ], | |
| dim=1, | |
| ) | |
| camera_conditions = rearrange( | |
| raymap, | |
| "b (n t) c h w -> b t (n c) h w", | |
| n=self.vae_scale_factor_temporal, | |
| ) | |
| else: | |
| camera_conditions = torch.zeros( | |
| batch_size, | |
| num_frames, | |
| 24, | |
| height // self.vae_scale_factor_spatial, | |
| width // self.vae_scale_factor_spatial, | |
| device=device, | |
| dtype=dtype, | |
| ) | |
| condition_latents = torch.cat([condition_latents, camera_conditions], dim=2) | |
| latents = randn_tensor(shape, device=device, generator=generator, dtype=dtype) | |
| # scale the initial noise by the standard deviation required by the scheduler | |
| latents = latents * self.scheduler.init_noise_sigma | |
| return latents, condition_latents | |
| def __call__( | |
| self, | |
| task: Optional[str] = None, | |
| image: Optional[PipelineImageInput] = None, | |
| video: Optional[PipelineImageInput] = None, | |
| goal: Optional[PipelineImageInput] = None, | |
| raymap: Optional[Union[torch.Tensor, np.ndarray]] = None, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_frames: Optional[int] = None, | |
| num_inference_steps: Optional[int] = None, | |
| timesteps: Optional[List[int]] = None, | |
| guidance_scale: Optional[float] = None, | |
| use_dynamic_cfg: bool = False, | |
| num_videos_per_prompt: int = 1, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| return_dict: bool = True, | |
| attention_kwargs: Optional[Dict] = None, | |
| fps: Optional[int] = None, | |
| ) -> Union[AetherV1PipelineOutput, Tuple]: | |
| if task is None: | |
| if video is not None: | |
| task = "reconstruction" | |
| elif goal is not None: | |
| task = "planning" | |
| else: | |
| task = "prediction" | |
| height = ( | |
| height | |
| or self.transformer.config.sample_height * self.vae_scale_factor_spatial | |
| ) | |
| width = ( | |
| width | |
| or self.transformer.config.sample_width * self.vae_scale_factor_spatial | |
| ) | |
| num_frames = num_frames or self.transformer.config.sample_frames | |
| fps = fps or self._base_fps | |
| num_videos_per_prompt = 1 | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs( | |
| task=task, | |
| image=image, | |
| video=video, | |
| goal=goal, | |
| raymap=raymap, | |
| height=height, | |
| width=width, | |
| num_frames=num_frames, | |
| fps=fps, | |
| ) | |
| # 2. Preprocess inputs | |
| image, goal, video, raymap = self.preprocess_inputs( | |
| image=image, | |
| goal=goal, | |
| video=video, | |
| raymap=raymap, | |
| height=height, | |
| width=width, | |
| num_frames=num_frames, | |
| ) | |
| self._guidance_scale = guidance_scale | |
| self._current_timestep = None | |
| self._attention_kwargs = attention_kwargs | |
| self._interrupt = False | |
| batch_size = 1 | |
| device = self._execution_device | |
| # 3. Encode input prompt | |
| prompt_embeds = self.empty_prompt_embeds.to(device) | |
| num_inference_steps = ( | |
| num_inference_steps or self._default_num_inference_steps[task] | |
| ) | |
| guidance_scale = guidance_scale or self._default_guidance_scale[task] | |
| use_dynamic_cfg = use_dynamic_cfg or self._default_use_dynamic_cfg[task] | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| # 4. Prepare timesteps | |
| timesteps, num_inference_steps = retrieve_timesteps( | |
| self.scheduler, num_inference_steps, device, timesteps | |
| ) | |
| self._num_timesteps = len(timesteps) | |
| # 5. Prepare latents | |
| latents, condition_latents = self.prepare_latents( | |
| image, | |
| goal, | |
| video, | |
| raymap, | |
| batch_size * num_videos_per_prompt, | |
| num_frames, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| ) | |
| # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| # 7. Create rotary embeds if required | |
| image_rotary_emb = ( | |
| self._prepare_rotary_positional_embeddings( | |
| height, width, latents.size(1), device, fps=fps | |
| ) | |
| if self.transformer.config.use_rotary_positional_embeddings | |
| else None | |
| ) | |
| # 8. Create ofs embeds if required | |
| ofs_emb = ( | |
| None | |
| if self.transformer.config.ofs_embed_dim is None | |
| else latents.new_full((1,), fill_value=2.0) | |
| ) | |
| # 8. Denoising loop | |
| num_warmup_steps = max( | |
| len(timesteps) - num_inference_steps * self.scheduler.order, 0 | |
| ) | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| # for DPM-solver++ | |
| old_pred_original_sample = None | |
| for i, t in enumerate(timesteps): | |
| if self.interrupt: | |
| continue | |
| self._current_timestep = t | |
| latent_model_input = ( | |
| torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
| ) | |
| latent_model_input = self.scheduler.scale_model_input( | |
| latent_model_input, t | |
| ) | |
| if do_classifier_free_guidance: | |
| if task == "planning": | |
| assert goal is not None | |
| uncond = condition_latents.clone() | |
| uncond[:, :, : self.vae.config.latent_channels] = 0 | |
| latent_condition = torch.cat([uncond, condition_latents]) | |
| elif task == "prediction": | |
| uncond = condition_latents.clone() | |
| uncond[:, :1, : self.vae.config.latent_channels] = 0 | |
| latent_condition = torch.cat([uncond, condition_latents]) | |
| else: | |
| raise ValueError( | |
| f"Task {task} not supported for classifier-free guidance." | |
| ) | |
| else: | |
| latent_condition = condition_latents | |
| latent_model_input = torch.cat( | |
| [latent_model_input, latent_condition], dim=2 | |
| ) | |
| # broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
| timestep = t.expand(latent_model_input.shape[0]) | |
| # predict noise model_output | |
| noise_pred = self.transformer( | |
| hidden_states=latent_model_input, | |
| encoder_hidden_states=prompt_embeds.repeat( | |
| latent_model_input.shape[0], 1, 1 | |
| ), | |
| timestep=timestep, | |
| ofs=ofs_emb, | |
| image_rotary_emb=image_rotary_emb, | |
| attention_kwargs=attention_kwargs, | |
| return_dict=False, | |
| )[0] | |
| noise_pred = noise_pred.float() | |
| # perform guidance | |
| if use_dynamic_cfg: | |
| self._guidance_scale = 1 + guidance_scale * ( | |
| ( | |
| 1 | |
| - math.cos( | |
| math.pi | |
| * ( | |
| (num_inference_steps - t.item()) | |
| / num_inference_steps | |
| ) | |
| ** 5.0 | |
| ) | |
| ) | |
| / 2 | |
| ) | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + self.guidance_scale * ( | |
| noise_pred_text - noise_pred_uncond | |
| ) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| if not isinstance(self.scheduler, CogVideoXDPMScheduler): | |
| latents = self.scheduler.step( | |
| noise_pred, t, latents, **extra_step_kwargs, return_dict=False | |
| )[0] | |
| else: | |
| latents, old_pred_original_sample = self.scheduler.step( | |
| noise_pred, | |
| old_pred_original_sample, | |
| t, | |
| timesteps[i - 1] if i > 0 else None, | |
| latents, | |
| **extra_step_kwargs, | |
| return_dict=False, | |
| ) | |
| latents = latents.to(prompt_embeds.dtype) | |
| if i == len(timesteps) - 1 or ( | |
| (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0 | |
| ): | |
| progress_bar.update() | |
| self._current_timestep = None | |
| rgb_latents = latents[:, :, : self.vae.config.latent_channels] | |
| disparity_latents = latents[ | |
| :, :, self.vae.config.latent_channels : self.vae.config.latent_channels * 2 | |
| ] | |
| camera_latents = latents[:, :, self.vae.config.latent_channels * 2 :] | |
| rgb_video = self.decode_latents(rgb_latents) | |
| rgb_video = self.video_processor.postprocess_video( | |
| video=rgb_video, output_type="np" | |
| ) | |
| disparity_video = self.decode_latents(disparity_latents) | |
| disparity_video = disparity_video.mean(dim=1, keepdim=False) | |
| disparity_video = disparity_video * 0.5 + 0.5 | |
| disparity_video = torch.square(disparity_video) | |
| disparity_video = disparity_video.float().cpu().numpy() | |
| raymap = ( | |
| rearrange(camera_latents, "b t (n c) h w -> b (n t) c h w", n=4)[ | |
| :, -rgb_video.shape[1] :, :, : | |
| ] | |
| .float() | |
| .cpu() | |
| .numpy() | |
| ) | |
| # Offload all models | |
| self.maybe_free_model_hooks() | |
| if not return_dict: | |
| return ( | |
| rgb_video, | |
| disparity_video, | |
| raymap, | |
| ) | |
| return AetherV1PipelineOutput( | |
| rgb=rgb_video.squeeze(0), | |
| disparity=disparity_video.squeeze(0), | |
| raymap=raymap.squeeze(0), | |
| ) | |