Spaces:
Build error
Build error
Wenzheng Chang
commited on
Commit
·
da3b980
1
Parent(s):
9562db5
add app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,1470 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gc
|
| 2 |
+
import os
|
| 3 |
+
import random
|
| 4 |
+
import re
|
| 5 |
+
from datetime import datetime
|
| 6 |
+
from typing import Dict, List, Optional, Tuple
|
| 7 |
+
|
| 8 |
+
import gradio as gr
|
| 9 |
+
import imageio.v3 as iio
|
| 10 |
+
import numpy as np
|
| 11 |
+
import PIL
|
| 12 |
+
import rootutils
|
| 13 |
+
import torch
|
| 14 |
+
from diffusers import (
|
| 15 |
+
AutoencoderKLCogVideoX,
|
| 16 |
+
CogVideoXDPMScheduler,
|
| 17 |
+
CogVideoXTransformer3DModel,
|
| 18 |
+
)
|
| 19 |
+
from transformers import AutoTokenizer, T5EncoderModel
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
rootutils.setup_root(__file__, indicator=".project-root", pythonpath=True)
|
| 23 |
+
|
| 24 |
+
from aether.pipelines.aetherv1_pipeline_cogvideox import ( # noqa: E402
|
| 25 |
+
AetherV1PipelineCogVideoX,
|
| 26 |
+
AetherV1PipelineOutput,
|
| 27 |
+
)
|
| 28 |
+
from aether.utils.postprocess_utils import ( # noqa: E402
|
| 29 |
+
align_camera_extrinsics,
|
| 30 |
+
apply_transformation,
|
| 31 |
+
colorize_depth,
|
| 32 |
+
compute_scale,
|
| 33 |
+
get_intrinsics,
|
| 34 |
+
interpolate_poses,
|
| 35 |
+
postprocess_pointmap,
|
| 36 |
+
project,
|
| 37 |
+
raymap_to_poses,
|
| 38 |
+
)
|
| 39 |
+
from aether.utils.visualize_utils import predictions_to_glb # noqa: E402
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def seed_all(seed: int = 0) -> None:
|
| 46 |
+
"""
|
| 47 |
+
Set random seeds of all components.
|
| 48 |
+
"""
|
| 49 |
+
random.seed(seed)
|
| 50 |
+
np.random.seed(seed)
|
| 51 |
+
torch.manual_seed(seed)
|
| 52 |
+
torch.cuda.manual_seed_all(seed)
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
# Global pipeline
|
| 56 |
+
cogvideox_pretrained_model_name_or_path: str = "THUDM/CogVideoX-5b-I2V"
|
| 57 |
+
aether_pretrained_model_name_or_path: str = "AetherWorldModel/AetherV1"
|
| 58 |
+
pipeline = AetherV1PipelineCogVideoX(
|
| 59 |
+
tokenizer=AutoTokenizer.from_pretrained(
|
| 60 |
+
cogvideox_pretrained_model_name_or_path,
|
| 61 |
+
subfolder="tokenizer",
|
| 62 |
+
),
|
| 63 |
+
text_encoder=T5EncoderModel.from_pretrained(
|
| 64 |
+
cogvideox_pretrained_model_name_or_path, subfolder="text_encoder"
|
| 65 |
+
),
|
| 66 |
+
vae=AutoencoderKLCogVideoX.from_pretrained(
|
| 67 |
+
cogvideox_pretrained_model_name_or_path, subfolder="vae"
|
| 68 |
+
),
|
| 69 |
+
scheduler=CogVideoXDPMScheduler.from_pretrained(
|
| 70 |
+
cogvideox_pretrained_model_name_or_path, subfolder="scheduler"
|
| 71 |
+
),
|
| 72 |
+
transformer=CogVideoXTransformer3DModel.from_pretrained(
|
| 73 |
+
aether_pretrained_model_name_or_path, subfolder="transformer"
|
| 74 |
+
),
|
| 75 |
+
)
|
| 76 |
+
pipeline.vae.enable_slicing()
|
| 77 |
+
pipeline.vae.enable_tiling()
|
| 78 |
+
pipeline.to(device)
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
def build_pipeline() -> AetherV1PipelineCogVideoX:
|
| 82 |
+
"""Initialize the model pipeline."""
|
| 83 |
+
return pipeline
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
def get_window_starts(
|
| 87 |
+
total_frames: int, sliding_window_size: int, temporal_stride: int
|
| 88 |
+
) -> List[int]:
|
| 89 |
+
"""Calculate window start indices."""
|
| 90 |
+
starts = list(
|
| 91 |
+
range(
|
| 92 |
+
0,
|
| 93 |
+
total_frames - sliding_window_size + 1,
|
| 94 |
+
temporal_stride,
|
| 95 |
+
)
|
| 96 |
+
)
|
| 97 |
+
if (
|
| 98 |
+
total_frames > sliding_window_size
|
| 99 |
+
and (total_frames - sliding_window_size) % temporal_stride != 0
|
| 100 |
+
):
|
| 101 |
+
starts.append(total_frames - sliding_window_size)
|
| 102 |
+
return starts
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
def blend_and_merge_window_results(
|
| 106 |
+
window_results: List[AetherV1PipelineOutput], window_indices: List[int], args: Dict
|
| 107 |
+
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
|
| 108 |
+
"""Blend and merge window results."""
|
| 109 |
+
merged_rgb = None
|
| 110 |
+
merged_disparity = None
|
| 111 |
+
merged_poses = None
|
| 112 |
+
merged_focals = None
|
| 113 |
+
align_pointmaps = args.get("align_pointmaps", True)
|
| 114 |
+
smooth_camera = args.get("smooth_camera", True)
|
| 115 |
+
smooth_method = args.get("smooth_method", "kalman") if smooth_camera else "none"
|
| 116 |
+
|
| 117 |
+
if align_pointmaps:
|
| 118 |
+
merged_pointmaps = None
|
| 119 |
+
|
| 120 |
+
w1 = window_results[0].disparity
|
| 121 |
+
|
| 122 |
+
for idx, (window_result, t_start) in enumerate(zip(window_results, window_indices)):
|
| 123 |
+
t_end = t_start + window_result.rgb.shape[0]
|
| 124 |
+
if idx == 0:
|
| 125 |
+
merged_rgb = window_result.rgb
|
| 126 |
+
merged_disparity = window_result.disparity
|
| 127 |
+
pointmap_dict = postprocess_pointmap(
|
| 128 |
+
window_result.disparity,
|
| 129 |
+
window_result.raymap,
|
| 130 |
+
vae_downsample_scale=8,
|
| 131 |
+
ray_o_scale_inv=0.1,
|
| 132 |
+
smooth_camera=smooth_camera,
|
| 133 |
+
smooth_method=smooth_method if smooth_camera else "none",
|
| 134 |
+
)
|
| 135 |
+
merged_poses = pointmap_dict["camera_pose"]
|
| 136 |
+
merged_focals = (
|
| 137 |
+
pointmap_dict["intrinsics"][:, 0, 0]
|
| 138 |
+
+ pointmap_dict["intrinsics"][:, 1, 1]
|
| 139 |
+
) / 2
|
| 140 |
+
if align_pointmaps:
|
| 141 |
+
merged_pointmaps = pointmap_dict["pointmap"]
|
| 142 |
+
else:
|
| 143 |
+
overlap_t = window_indices[idx - 1] + window_result.rgb.shape[0] - t_start
|
| 144 |
+
|
| 145 |
+
window_disparity = window_result.disparity
|
| 146 |
+
|
| 147 |
+
# Align disparity
|
| 148 |
+
disp_mask = window_disparity[:overlap_t].reshape(1, -1, w1.shape[-1]) > 0.1
|
| 149 |
+
scale = compute_scale(
|
| 150 |
+
window_disparity[:overlap_t].reshape(1, -1, w1.shape[-1]),
|
| 151 |
+
merged_disparity[-overlap_t:].reshape(1, -1, w1.shape[-1]),
|
| 152 |
+
disp_mask.reshape(1, -1, w1.shape[-1]),
|
| 153 |
+
)
|
| 154 |
+
window_disparity = scale * window_disparity
|
| 155 |
+
|
| 156 |
+
# Blend disparity
|
| 157 |
+
result_disparity = np.ones((t_end, *w1.shape[1:]))
|
| 158 |
+
result_disparity[:t_start] = merged_disparity[:t_start]
|
| 159 |
+
result_disparity[t_start + overlap_t :] = window_disparity[overlap_t:]
|
| 160 |
+
weight = np.linspace(1, 0, overlap_t)[:, None, None]
|
| 161 |
+
result_disparity[t_start : t_start + overlap_t] = merged_disparity[
|
| 162 |
+
t_start : t_start + overlap_t
|
| 163 |
+
] * weight + window_disparity[:overlap_t] * (1 - weight)
|
| 164 |
+
merged_disparity = result_disparity
|
| 165 |
+
|
| 166 |
+
# Blend RGB
|
| 167 |
+
result_rgb = np.ones((t_end, *w1.shape[1:], 3))
|
| 168 |
+
result_rgb[:t_start] = merged_rgb[:t_start]
|
| 169 |
+
result_rgb[t_start + overlap_t :] = window_result.rgb[overlap_t:]
|
| 170 |
+
weight_rgb = np.linspace(1, 0, overlap_t)[:, None, None, None]
|
| 171 |
+
result_rgb[t_start : t_start + overlap_t] = merged_rgb[
|
| 172 |
+
t_start : t_start + overlap_t
|
| 173 |
+
] * weight_rgb + window_result.rgb[:overlap_t] * (1 - weight_rgb)
|
| 174 |
+
merged_rgb = result_rgb
|
| 175 |
+
|
| 176 |
+
# Align poses
|
| 177 |
+
window_raymap = window_result.raymap
|
| 178 |
+
window_poses, window_Fov_x, window_Fov_y = raymap_to_poses(
|
| 179 |
+
window_raymap, ray_o_scale_inv=0.1
|
| 180 |
+
)
|
| 181 |
+
rel_r, rel_t, rel_s = align_camera_extrinsics(
|
| 182 |
+
torch.from_numpy(window_poses[:overlap_t]),
|
| 183 |
+
torch.from_numpy(merged_poses[-overlap_t:]),
|
| 184 |
+
)
|
| 185 |
+
aligned_window_poses = (
|
| 186 |
+
apply_transformation(
|
| 187 |
+
torch.from_numpy(window_poses),
|
| 188 |
+
rel_r,
|
| 189 |
+
rel_t,
|
| 190 |
+
rel_s,
|
| 191 |
+
return_extri=True,
|
| 192 |
+
)
|
| 193 |
+
.cpu()
|
| 194 |
+
.numpy()
|
| 195 |
+
)
|
| 196 |
+
|
| 197 |
+
result_poses = np.ones((t_end, 4, 4))
|
| 198 |
+
result_poses[:t_start] = merged_poses[:t_start]
|
| 199 |
+
result_poses[t_start + overlap_t :] = aligned_window_poses[overlap_t:]
|
| 200 |
+
|
| 201 |
+
# Interpolate poses in overlap region
|
| 202 |
+
weights = np.linspace(1, 0, overlap_t)
|
| 203 |
+
for t in range(overlap_t):
|
| 204 |
+
weight = weights[t]
|
| 205 |
+
pose1 = merged_poses[t_start + t]
|
| 206 |
+
pose2 = aligned_window_poses[t]
|
| 207 |
+
result_poses[t_start + t] = interpolate_poses(pose1, pose2, weight)
|
| 208 |
+
|
| 209 |
+
merged_poses = result_poses
|
| 210 |
+
|
| 211 |
+
# Align intrinsics
|
| 212 |
+
window_intrinsics, _ = get_intrinsics(
|
| 213 |
+
batch_size=window_poses.shape[0],
|
| 214 |
+
h=window_result.disparity.shape[1],
|
| 215 |
+
w=window_result.disparity.shape[2],
|
| 216 |
+
fovx=window_Fov_x,
|
| 217 |
+
fovy=window_Fov_y,
|
| 218 |
+
)
|
| 219 |
+
window_focals = (
|
| 220 |
+
window_intrinsics[:, 0, 0] + window_intrinsics[:, 1, 1]
|
| 221 |
+
) / 2
|
| 222 |
+
scale = (merged_focals[-overlap_t:] / window_focals[:overlap_t]).mean()
|
| 223 |
+
window_focals = scale * window_focals
|
| 224 |
+
result_focals = np.ones((t_end,))
|
| 225 |
+
result_focals[:t_start] = merged_focals[:t_start]
|
| 226 |
+
result_focals[t_start + overlap_t :] = window_focals[overlap_t:]
|
| 227 |
+
weight = np.linspace(1, 0, overlap_t)
|
| 228 |
+
result_focals[t_start : t_start + overlap_t] = merged_focals[
|
| 229 |
+
t_start : t_start + overlap_t
|
| 230 |
+
] * weight + window_focals[:overlap_t] * (1 - weight)
|
| 231 |
+
merged_focals = result_focals
|
| 232 |
+
|
| 233 |
+
if align_pointmaps:
|
| 234 |
+
# Align pointmaps
|
| 235 |
+
window_pointmaps = postprocess_pointmap(
|
| 236 |
+
result_disparity[t_start:],
|
| 237 |
+
window_raymap,
|
| 238 |
+
vae_downsample_scale=8,
|
| 239 |
+
camera_pose=aligned_window_poses,
|
| 240 |
+
focal=window_focals,
|
| 241 |
+
ray_o_scale_inv=0.1,
|
| 242 |
+
smooth_camera=smooth_camera,
|
| 243 |
+
smooth_method=smooth_method if smooth_camera else "none",
|
| 244 |
+
)
|
| 245 |
+
result_pointmaps = np.ones((t_end, *w1.shape[1:], 3))
|
| 246 |
+
result_pointmaps[:t_start] = merged_pointmaps[:t_start]
|
| 247 |
+
result_pointmaps[t_start + overlap_t :] = window_pointmaps["pointmap"][
|
| 248 |
+
overlap_t:
|
| 249 |
+
]
|
| 250 |
+
weight = np.linspace(1, 0, overlap_t)[:, None, None, None]
|
| 251 |
+
result_pointmaps[t_start : t_start + overlap_t] = merged_pointmaps[
|
| 252 |
+
t_start : t_start + overlap_t
|
| 253 |
+
] * weight + window_pointmaps["pointmap"][:overlap_t] * (1 - weight)
|
| 254 |
+
merged_pointmaps = result_pointmaps
|
| 255 |
+
|
| 256 |
+
# project to pointmaps
|
| 257 |
+
height = args.get("height", 480)
|
| 258 |
+
width = args.get("width", 720)
|
| 259 |
+
|
| 260 |
+
intrinsics = [
|
| 261 |
+
np.array([[f, 0, 0.5 * width], [0, f, 0.5 * height], [0, 0, 1]])
|
| 262 |
+
for f in merged_focals
|
| 263 |
+
]
|
| 264 |
+
if align_pointmaps:
|
| 265 |
+
pointmaps = merged_pointmaps
|
| 266 |
+
else:
|
| 267 |
+
pointmaps = np.stack(
|
| 268 |
+
[
|
| 269 |
+
project(
|
| 270 |
+
1 / np.clip(merged_disparity[i], 1e-8, 1e8),
|
| 271 |
+
intrinsics[i],
|
| 272 |
+
merged_poses[i],
|
| 273 |
+
)
|
| 274 |
+
for i in range(merged_poses.shape[0])
|
| 275 |
+
]
|
| 276 |
+
)
|
| 277 |
+
|
| 278 |
+
return merged_rgb, merged_disparity, merged_poses, pointmaps
|
| 279 |
+
|
| 280 |
+
|
| 281 |
+
def process_video_to_frames(video_path: str, fps_sample: int = 12) -> List[str]:
|
| 282 |
+
"""Process video into frames and save them locally."""
|
| 283 |
+
# Create a unique output directory
|
| 284 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 285 |
+
output_dir = f"temp_frames_{timestamp}"
|
| 286 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 287 |
+
|
| 288 |
+
# Read video
|
| 289 |
+
video = iio.imread(video_path)
|
| 290 |
+
|
| 291 |
+
# Calculate frame interval based on original video fps
|
| 292 |
+
if isinstance(video, np.ndarray):
|
| 293 |
+
# For captured videos
|
| 294 |
+
total_frames = len(video)
|
| 295 |
+
frame_interval = max(
|
| 296 |
+
1, round(total_frames / (fps_sample * (total_frames / 30)))
|
| 297 |
+
)
|
| 298 |
+
else:
|
| 299 |
+
# Default if can't determine
|
| 300 |
+
frame_interval = 2
|
| 301 |
+
|
| 302 |
+
frame_paths = []
|
| 303 |
+
for i, frame in enumerate(video[::frame_interval]):
|
| 304 |
+
frame_path = os.path.join(output_dir, f"frame_{i:04d}.jpg")
|
| 305 |
+
if isinstance(frame, np.ndarray):
|
| 306 |
+
iio.imwrite(frame_path, frame)
|
| 307 |
+
frame_paths.append(frame_path)
|
| 308 |
+
|
| 309 |
+
return frame_paths, output_dir
|
| 310 |
+
|
| 311 |
+
|
| 312 |
+
def save_output_files(
|
| 313 |
+
rgb: np.ndarray,
|
| 314 |
+
disparity: np.ndarray,
|
| 315 |
+
poses: Optional[np.ndarray] = None,
|
| 316 |
+
raymap: Optional[np.ndarray] = None,
|
| 317 |
+
pointmap: Optional[np.ndarray] = None,
|
| 318 |
+
task: str = "reconstruction",
|
| 319 |
+
output_dir: str = "outputs",
|
| 320 |
+
**kwargs,
|
| 321 |
+
) -> Dict[str, str]:
|
| 322 |
+
"""
|
| 323 |
+
Save outputs and return paths to saved files.
|
| 324 |
+
"""
|
| 325 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 326 |
+
|
| 327 |
+
if pointmap is None and raymap is not None:
|
| 328 |
+
# Generate pointmap from raymap and disparity
|
| 329 |
+
smooth_camera = kwargs.get("smooth_camera", True)
|
| 330 |
+
smooth_method = (
|
| 331 |
+
kwargs.get("smooth_method", "kalman") if smooth_camera else "none"
|
| 332 |
+
)
|
| 333 |
+
|
| 334 |
+
pointmap_dict = postprocess_pointmap(
|
| 335 |
+
disparity,
|
| 336 |
+
raymap,
|
| 337 |
+
vae_downsample_scale=8,
|
| 338 |
+
ray_o_scale_inv=0.1,
|
| 339 |
+
smooth_camera=smooth_camera,
|
| 340 |
+
smooth_method=smooth_method,
|
| 341 |
+
)
|
| 342 |
+
pointmap = pointmap_dict["pointmap"]
|
| 343 |
+
|
| 344 |
+
if poses is None and raymap is not None:
|
| 345 |
+
poses, _, _ = raymap_to_poses(raymap, ray_o_scale_inv=0.1)
|
| 346 |
+
|
| 347 |
+
# Create a unique filename
|
| 348 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 349 |
+
base_filename = f"{task}_{timestamp}"
|
| 350 |
+
|
| 351 |
+
# Paths for saved files
|
| 352 |
+
paths = {}
|
| 353 |
+
|
| 354 |
+
# Save RGB video
|
| 355 |
+
rgb_path = os.path.join(output_dir, f"{base_filename}_rgb.mp4")
|
| 356 |
+
iio.imwrite(
|
| 357 |
+
rgb_path,
|
| 358 |
+
(np.clip(rgb, 0, 1) * 255).astype(np.uint8),
|
| 359 |
+
fps=kwargs.get("fps", 12),
|
| 360 |
+
)
|
| 361 |
+
paths["rgb"] = rgb_path
|
| 362 |
+
|
| 363 |
+
# Save depth/disparity video
|
| 364 |
+
depth_path = os.path.join(output_dir, f"{base_filename}_disparity.mp4")
|
| 365 |
+
iio.imwrite(
|
| 366 |
+
depth_path,
|
| 367 |
+
(colorize_depth(disparity) * 255).astype(np.uint8),
|
| 368 |
+
fps=kwargs.get("fps", 12),
|
| 369 |
+
)
|
| 370 |
+
paths["disparity"] = depth_path
|
| 371 |
+
|
| 372 |
+
# Save point cloud GLB files
|
| 373 |
+
if pointmap is not None and poses is not None:
|
| 374 |
+
pointcloud_save_frame_interval = kwargs.get(
|
| 375 |
+
"pointcloud_save_frame_interval", 10
|
| 376 |
+
)
|
| 377 |
+
max_depth = kwargs.get("max_depth", 100.0)
|
| 378 |
+
rtol = kwargs.get("rtol", 0.03)
|
| 379 |
+
|
| 380 |
+
glb_paths = []
|
| 381 |
+
# Determine which frames to save based on the interval
|
| 382 |
+
frames_to_save = list(
|
| 383 |
+
range(0, pointmap.shape[0], pointcloud_save_frame_interval)
|
| 384 |
+
)
|
| 385 |
+
|
| 386 |
+
# Always include the first and last frame
|
| 387 |
+
if 0 not in frames_to_save:
|
| 388 |
+
frames_to_save.insert(0, 0)
|
| 389 |
+
if pointmap.shape[0] - 1 not in frames_to_save:
|
| 390 |
+
frames_to_save.append(pointmap.shape[0] - 1)
|
| 391 |
+
|
| 392 |
+
# Sort the frames to ensure they're in order
|
| 393 |
+
frames_to_save = sorted(set(frames_to_save))
|
| 394 |
+
|
| 395 |
+
for frame_idx in frames_to_save:
|
| 396 |
+
if frame_idx >= pointmap.shape[0]:
|
| 397 |
+
continue
|
| 398 |
+
|
| 399 |
+
predictions = {
|
| 400 |
+
"world_points": pointmap[frame_idx : frame_idx + 1],
|
| 401 |
+
"images": rgb[frame_idx : frame_idx + 1],
|
| 402 |
+
"depths": 1 / np.clip(disparity[frame_idx : frame_idx + 1], 1e-8, 1e8),
|
| 403 |
+
"camera_poses": poses[frame_idx : frame_idx + 1],
|
| 404 |
+
}
|
| 405 |
+
|
| 406 |
+
glb_path = os.path.join(
|
| 407 |
+
output_dir, f"{base_filename}_pointcloud_frame_{frame_idx}.glb"
|
| 408 |
+
)
|
| 409 |
+
|
| 410 |
+
scene_3d = predictions_to_glb(
|
| 411 |
+
predictions,
|
| 412 |
+
filter_by_frames="all",
|
| 413 |
+
show_cam=True,
|
| 414 |
+
max_depth=max_depth,
|
| 415 |
+
rtol=rtol,
|
| 416 |
+
frame_rel_idx=float(frame_idx) / pointmap.shape[0],
|
| 417 |
+
)
|
| 418 |
+
scene_3d.export(glb_path)
|
| 419 |
+
glb_paths.append(glb_path)
|
| 420 |
+
|
| 421 |
+
paths["pointcloud_glbs"] = glb_paths
|
| 422 |
+
|
| 423 |
+
return paths
|
| 424 |
+
|
| 425 |
+
|
| 426 |
+
def process_reconstruction(
|
| 427 |
+
video_file,
|
| 428 |
+
height,
|
| 429 |
+
width,
|
| 430 |
+
num_frames,
|
| 431 |
+
num_inference_steps,
|
| 432 |
+
guidance_scale,
|
| 433 |
+
sliding_window_stride,
|
| 434 |
+
fps,
|
| 435 |
+
smooth_camera,
|
| 436 |
+
align_pointmaps,
|
| 437 |
+
max_depth,
|
| 438 |
+
rtol,
|
| 439 |
+
pointcloud_save_frame_interval,
|
| 440 |
+
seed,
|
| 441 |
+
progress=gr.Progress(),
|
| 442 |
+
):
|
| 443 |
+
"""
|
| 444 |
+
Process reconstruction task.
|
| 445 |
+
"""
|
| 446 |
+
try:
|
| 447 |
+
gc.collect()
|
| 448 |
+
torch.cuda.empty_cache()
|
| 449 |
+
|
| 450 |
+
# Set random seed
|
| 451 |
+
seed_all(seed)
|
| 452 |
+
|
| 453 |
+
# Build the pipeline
|
| 454 |
+
pipeline = build_pipeline()
|
| 455 |
+
|
| 456 |
+
progress(0.1, "Loading video")
|
| 457 |
+
# Check if video_file is a string or a file object
|
| 458 |
+
if isinstance(video_file, str):
|
| 459 |
+
video_path = video_file
|
| 460 |
+
else:
|
| 461 |
+
video_path = video_file.name
|
| 462 |
+
|
| 463 |
+
video = iio.imread(video_path).astype(np.float32) / 255.0
|
| 464 |
+
|
| 465 |
+
# Setup arguments
|
| 466 |
+
args = {
|
| 467 |
+
"height": height,
|
| 468 |
+
"width": width,
|
| 469 |
+
"num_frames": num_frames,
|
| 470 |
+
"sliding_window_stride": sliding_window_stride,
|
| 471 |
+
"smooth_camera": smooth_camera,
|
| 472 |
+
"smooth_method": "kalman" if smooth_camera else "none",
|
| 473 |
+
"align_pointmaps": align_pointmaps,
|
| 474 |
+
"max_depth": max_depth,
|
| 475 |
+
"rtol": rtol,
|
| 476 |
+
"pointcloud_save_frame_interval": pointcloud_save_frame_interval,
|
| 477 |
+
}
|
| 478 |
+
|
| 479 |
+
# Process in sliding windows
|
| 480 |
+
window_results = []
|
| 481 |
+
window_indices = get_window_starts(
|
| 482 |
+
len(video), num_frames, sliding_window_stride
|
| 483 |
+
)
|
| 484 |
+
|
| 485 |
+
progress(0.2, f"Processing video in {len(window_indices)} windows")
|
| 486 |
+
|
| 487 |
+
for i, start_idx in enumerate(window_indices):
|
| 488 |
+
progress_val = 0.2 + (0.6 * (i / len(window_indices)))
|
| 489 |
+
progress(progress_val, f"Processing window {i+1}/{len(window_indices)}")
|
| 490 |
+
|
| 491 |
+
output = pipeline(
|
| 492 |
+
task="reconstruction",
|
| 493 |
+
image=None,
|
| 494 |
+
goal=None,
|
| 495 |
+
video=video[start_idx : start_idx + num_frames],
|
| 496 |
+
raymap=None,
|
| 497 |
+
height=height,
|
| 498 |
+
width=width,
|
| 499 |
+
num_frames=num_frames,
|
| 500 |
+
fps=fps,
|
| 501 |
+
num_inference_steps=num_inference_steps,
|
| 502 |
+
guidance_scale=guidance_scale,
|
| 503 |
+
use_dynamic_cfg=False,
|
| 504 |
+
generator=torch.Generator(device=device).manual_seed(seed),
|
| 505 |
+
)
|
| 506 |
+
window_results.append(output)
|
| 507 |
+
|
| 508 |
+
progress(0.8, "Merging results from all windows")
|
| 509 |
+
# Merge window results
|
| 510 |
+
(
|
| 511 |
+
merged_rgb,
|
| 512 |
+
merged_disparity,
|
| 513 |
+
merged_poses,
|
| 514 |
+
pointmaps,
|
| 515 |
+
) = blend_and_merge_window_results(window_results, window_indices, args)
|
| 516 |
+
|
| 517 |
+
progress(0.9, "Saving output files")
|
| 518 |
+
# Save output files
|
| 519 |
+
output_dir = "outputs"
|
| 520 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 521 |
+
output_paths = save_output_files(
|
| 522 |
+
rgb=merged_rgb,
|
| 523 |
+
disparity=merged_disparity,
|
| 524 |
+
poses=merged_poses,
|
| 525 |
+
pointmap=pointmaps,
|
| 526 |
+
task="reconstruction",
|
| 527 |
+
output_dir=output_dir,
|
| 528 |
+
fps=12,
|
| 529 |
+
**args,
|
| 530 |
+
)
|
| 531 |
+
|
| 532 |
+
progress(1.0, "Done!")
|
| 533 |
+
|
| 534 |
+
# Return paths for displaying
|
| 535 |
+
return (
|
| 536 |
+
output_paths["rgb"],
|
| 537 |
+
output_paths["disparity"],
|
| 538 |
+
output_paths.get("pointcloud_glbs", []),
|
| 539 |
+
)
|
| 540 |
+
|
| 541 |
+
except Exception:
|
| 542 |
+
import traceback
|
| 543 |
+
|
| 544 |
+
traceback.print_exc()
|
| 545 |
+
return None, None, []
|
| 546 |
+
|
| 547 |
+
|
| 548 |
+
def process_prediction(
|
| 549 |
+
image_file,
|
| 550 |
+
height,
|
| 551 |
+
width,
|
| 552 |
+
num_frames,
|
| 553 |
+
num_inference_steps,
|
| 554 |
+
guidance_scale,
|
| 555 |
+
use_dynamic_cfg,
|
| 556 |
+
raymap_option,
|
| 557 |
+
post_reconstruction,
|
| 558 |
+
fps,
|
| 559 |
+
smooth_camera,
|
| 560 |
+
align_pointmaps,
|
| 561 |
+
max_depth,
|
| 562 |
+
rtol,
|
| 563 |
+
pointcloud_save_frame_interval,
|
| 564 |
+
seed,
|
| 565 |
+
progress=gr.Progress(),
|
| 566 |
+
):
|
| 567 |
+
"""
|
| 568 |
+
Process prediction task.
|
| 569 |
+
"""
|
| 570 |
+
try:
|
| 571 |
+
gc.collect()
|
| 572 |
+
torch.cuda.empty_cache()
|
| 573 |
+
|
| 574 |
+
# Set random seed
|
| 575 |
+
seed_all(seed)
|
| 576 |
+
|
| 577 |
+
# Build the pipeline
|
| 578 |
+
pipeline = build_pipeline()
|
| 579 |
+
|
| 580 |
+
progress(0.1, "Loading image")
|
| 581 |
+
# Check if image_file is a string or a file object
|
| 582 |
+
if isinstance(image_file, str):
|
| 583 |
+
image_path = image_file
|
| 584 |
+
else:
|
| 585 |
+
image_path = image_file.name
|
| 586 |
+
|
| 587 |
+
image = PIL.Image.open(image_path)
|
| 588 |
+
|
| 589 |
+
progress(0.2, "Running prediction")
|
| 590 |
+
# Run prediction
|
| 591 |
+
output = pipeline(
|
| 592 |
+
task="prediction",
|
| 593 |
+
image=image,
|
| 594 |
+
video=None,
|
| 595 |
+
goal=None,
|
| 596 |
+
raymap=np.load(f"assets/example_raymaps/raymap_{raymap_option}.npy"),
|
| 597 |
+
height=height,
|
| 598 |
+
width=width,
|
| 599 |
+
num_frames=num_frames,
|
| 600 |
+
fps=fps,
|
| 601 |
+
num_inference_steps=num_inference_steps,
|
| 602 |
+
guidance_scale=guidance_scale,
|
| 603 |
+
use_dynamic_cfg=use_dynamic_cfg,
|
| 604 |
+
generator=torch.Generator(device=device).manual_seed(seed),
|
| 605 |
+
return_dict=True,
|
| 606 |
+
)
|
| 607 |
+
|
| 608 |
+
# Show RGB output immediately
|
| 609 |
+
rgb_output = output.rgb
|
| 610 |
+
|
| 611 |
+
# Setup arguments for saving
|
| 612 |
+
args = {
|
| 613 |
+
"height": height,
|
| 614 |
+
"width": width,
|
| 615 |
+
"smooth_camera": smooth_camera,
|
| 616 |
+
"smooth_method": "kalman" if smooth_camera else "none",
|
| 617 |
+
"align_pointmaps": align_pointmaps,
|
| 618 |
+
"max_depth": max_depth,
|
| 619 |
+
"rtol": rtol,
|
| 620 |
+
"pointcloud_save_frame_interval": pointcloud_save_frame_interval,
|
| 621 |
+
}
|
| 622 |
+
|
| 623 |
+
if post_reconstruction:
|
| 624 |
+
progress(0.5, "Running post-reconstruction for better quality")
|
| 625 |
+
recon_output = pipeline(
|
| 626 |
+
task="reconstruction",
|
| 627 |
+
video=output.rgb,
|
| 628 |
+
height=height,
|
| 629 |
+
width=width,
|
| 630 |
+
num_frames=num_frames,
|
| 631 |
+
fps=fps,
|
| 632 |
+
num_inference_steps=4,
|
| 633 |
+
guidance_scale=1.0,
|
| 634 |
+
use_dynamic_cfg=False,
|
| 635 |
+
generator=torch.Generator(device=device).manual_seed(seed),
|
| 636 |
+
)
|
| 637 |
+
|
| 638 |
+
disparity = recon_output.disparity
|
| 639 |
+
raymap = recon_output.raymap
|
| 640 |
+
else:
|
| 641 |
+
disparity = output.disparity
|
| 642 |
+
raymap = output.raymap
|
| 643 |
+
|
| 644 |
+
progress(0.8, "Saving output files")
|
| 645 |
+
# Save output files
|
| 646 |
+
output_dir = "outputs"
|
| 647 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 648 |
+
output_paths = save_output_files(
|
| 649 |
+
rgb=rgb_output,
|
| 650 |
+
disparity=disparity,
|
| 651 |
+
raymap=raymap,
|
| 652 |
+
task="prediction",
|
| 653 |
+
output_dir=output_dir,
|
| 654 |
+
fps=12,
|
| 655 |
+
**args,
|
| 656 |
+
)
|
| 657 |
+
|
| 658 |
+
progress(1.0, "Done!")
|
| 659 |
+
|
| 660 |
+
# Return paths for displaying
|
| 661 |
+
return (
|
| 662 |
+
output_paths["rgb"],
|
| 663 |
+
output_paths["disparity"],
|
| 664 |
+
output_paths.get("pointcloud_glbs", []),
|
| 665 |
+
)
|
| 666 |
+
|
| 667 |
+
except Exception:
|
| 668 |
+
import traceback
|
| 669 |
+
|
| 670 |
+
traceback.print_exc()
|
| 671 |
+
return None, None, []
|
| 672 |
+
|
| 673 |
+
|
| 674 |
+
def process_planning(
|
| 675 |
+
image_file,
|
| 676 |
+
goal_file,
|
| 677 |
+
height,
|
| 678 |
+
width,
|
| 679 |
+
num_frames,
|
| 680 |
+
num_inference_steps,
|
| 681 |
+
guidance_scale,
|
| 682 |
+
use_dynamic_cfg,
|
| 683 |
+
post_reconstruction,
|
| 684 |
+
fps,
|
| 685 |
+
smooth_camera,
|
| 686 |
+
align_pointmaps,
|
| 687 |
+
max_depth,
|
| 688 |
+
rtol,
|
| 689 |
+
pointcloud_save_frame_interval,
|
| 690 |
+
seed,
|
| 691 |
+
progress=gr.Progress(),
|
| 692 |
+
):
|
| 693 |
+
"""
|
| 694 |
+
Process planning task.
|
| 695 |
+
"""
|
| 696 |
+
try:
|
| 697 |
+
gc.collect()
|
| 698 |
+
torch.cuda.empty_cache()
|
| 699 |
+
|
| 700 |
+
# Set random seed
|
| 701 |
+
seed_all(seed)
|
| 702 |
+
|
| 703 |
+
# Build the pipeline
|
| 704 |
+
pipeline = build_pipeline()
|
| 705 |
+
|
| 706 |
+
progress(0.1, "Loading images")
|
| 707 |
+
# Check if image_file and goal_file are strings or file objects
|
| 708 |
+
if isinstance(image_file, str):
|
| 709 |
+
image_path = image_file
|
| 710 |
+
else:
|
| 711 |
+
image_path = image_file.name
|
| 712 |
+
|
| 713 |
+
if isinstance(goal_file, str):
|
| 714 |
+
goal_path = goal_file
|
| 715 |
+
else:
|
| 716 |
+
goal_path = goal_file.name
|
| 717 |
+
|
| 718 |
+
image = PIL.Image.open(image_path)
|
| 719 |
+
goal = PIL.Image.open(goal_path)
|
| 720 |
+
|
| 721 |
+
progress(0.2, "Running planning")
|
| 722 |
+
# Run planning
|
| 723 |
+
output = pipeline(
|
| 724 |
+
task="planning",
|
| 725 |
+
image=image,
|
| 726 |
+
video=None,
|
| 727 |
+
goal=goal,
|
| 728 |
+
raymap=None,
|
| 729 |
+
height=height,
|
| 730 |
+
width=width,
|
| 731 |
+
num_frames=num_frames,
|
| 732 |
+
fps=fps,
|
| 733 |
+
num_inference_steps=num_inference_steps,
|
| 734 |
+
guidance_scale=guidance_scale,
|
| 735 |
+
use_dynamic_cfg=use_dynamic_cfg,
|
| 736 |
+
generator=torch.Generator(device=device).manual_seed(seed),
|
| 737 |
+
return_dict=True,
|
| 738 |
+
)
|
| 739 |
+
|
| 740 |
+
# Show RGB output immediately
|
| 741 |
+
rgb_output = output.rgb
|
| 742 |
+
|
| 743 |
+
# Setup arguments for saving
|
| 744 |
+
args = {
|
| 745 |
+
"height": height,
|
| 746 |
+
"width": width,
|
| 747 |
+
"smooth_camera": smooth_camera,
|
| 748 |
+
"smooth_method": "kalman" if smooth_camera else "none",
|
| 749 |
+
"align_pointmaps": align_pointmaps,
|
| 750 |
+
"max_depth": max_depth,
|
| 751 |
+
"rtol": rtol,
|
| 752 |
+
"pointcloud_save_frame_interval": pointcloud_save_frame_interval,
|
| 753 |
+
}
|
| 754 |
+
|
| 755 |
+
if post_reconstruction:
|
| 756 |
+
progress(0.5, "Running post-reconstruction for better quality")
|
| 757 |
+
recon_output = pipeline(
|
| 758 |
+
task="reconstruction",
|
| 759 |
+
video=output.rgb,
|
| 760 |
+
height=height,
|
| 761 |
+
width=width,
|
| 762 |
+
num_frames=num_frames,
|
| 763 |
+
fps=12,
|
| 764 |
+
num_inference_steps=4,
|
| 765 |
+
guidance_scale=1.0,
|
| 766 |
+
use_dynamic_cfg=False,
|
| 767 |
+
generator=torch.Generator(device=device).manual_seed(seed),
|
| 768 |
+
)
|
| 769 |
+
|
| 770 |
+
disparity = recon_output.disparity
|
| 771 |
+
raymap = recon_output.raymap
|
| 772 |
+
else:
|
| 773 |
+
disparity = output.disparity
|
| 774 |
+
raymap = output.raymap
|
| 775 |
+
|
| 776 |
+
progress(0.8, "Saving output files")
|
| 777 |
+
# Save output files
|
| 778 |
+
output_dir = "outputs"
|
| 779 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 780 |
+
output_paths = save_output_files(
|
| 781 |
+
rgb=rgb_output,
|
| 782 |
+
disparity=disparity,
|
| 783 |
+
raymap=raymap,
|
| 784 |
+
task="planning",
|
| 785 |
+
output_dir=output_dir,
|
| 786 |
+
fps=fps,
|
| 787 |
+
**args,
|
| 788 |
+
)
|
| 789 |
+
|
| 790 |
+
progress(1.0, "Done!")
|
| 791 |
+
|
| 792 |
+
# Return paths for displaying
|
| 793 |
+
return (
|
| 794 |
+
output_paths["rgb"],
|
| 795 |
+
output_paths["disparity"],
|
| 796 |
+
output_paths.get("pointcloud_glbs", []),
|
| 797 |
+
)
|
| 798 |
+
|
| 799 |
+
except Exception:
|
| 800 |
+
import traceback
|
| 801 |
+
|
| 802 |
+
traceback.print_exc()
|
| 803 |
+
return None, None, []
|
| 804 |
+
|
| 805 |
+
|
| 806 |
+
def update_task_ui(task):
|
| 807 |
+
"""Update UI elements based on selected task."""
|
| 808 |
+
if task == "reconstruction":
|
| 809 |
+
return (
|
| 810 |
+
gr.update(visible=True), # video_input
|
| 811 |
+
gr.update(visible=False), # image_input
|
| 812 |
+
gr.update(visible=False), # goal_input
|
| 813 |
+
gr.update(visible=False), # image_preview
|
| 814 |
+
gr.update(visible=False), # goal_preview
|
| 815 |
+
gr.update(value=4), # num_inference_steps
|
| 816 |
+
gr.update(visible=True), # sliding_window_stride
|
| 817 |
+
gr.update(visible=False), # use_dynamic_cfg
|
| 818 |
+
gr.update(visible=False), # raymap_option
|
| 819 |
+
gr.update(visible=False), # post_reconstruction
|
| 820 |
+
gr.update(value=1.0), # guidance_scale
|
| 821 |
+
)
|
| 822 |
+
elif task == "prediction":
|
| 823 |
+
return (
|
| 824 |
+
gr.update(visible=False), # video_input
|
| 825 |
+
gr.update(visible=True), # image_input
|
| 826 |
+
gr.update(visible=False), # goal_input
|
| 827 |
+
gr.update(visible=True), # image_preview
|
| 828 |
+
gr.update(visible=False), # goal_preview
|
| 829 |
+
gr.update(value=50), # num_inference_steps
|
| 830 |
+
gr.update(visible=False), # sliding_window_stride
|
| 831 |
+
gr.update(visible=True), # use_dynamic_cfg
|
| 832 |
+
gr.update(visible=True), # raymap_option
|
| 833 |
+
gr.update(visible=True), # post_reconstruction
|
| 834 |
+
gr.update(value=3.0), # guidance_scale
|
| 835 |
+
)
|
| 836 |
+
elif task == "planning":
|
| 837 |
+
return (
|
| 838 |
+
gr.update(visible=False), # video_input
|
| 839 |
+
gr.update(visible=True), # image_input
|
| 840 |
+
gr.update(visible=True), # goal_input
|
| 841 |
+
gr.update(visible=True), # image_preview
|
| 842 |
+
gr.update(visible=True), # goal_preview
|
| 843 |
+
gr.update(value=50), # num_inference_steps
|
| 844 |
+
gr.update(visible=False), # sliding_window_stride
|
| 845 |
+
gr.update(visible=True), # use_dynamic_cfg
|
| 846 |
+
gr.update(visible=False), # raymap_option
|
| 847 |
+
gr.update(visible=True), # post_reconstruction
|
| 848 |
+
gr.update(value=3.0), # guidance_scale
|
| 849 |
+
)
|
| 850 |
+
|
| 851 |
+
|
| 852 |
+
def update_image_preview(image_file):
|
| 853 |
+
"""Update the image preview."""
|
| 854 |
+
if image_file:
|
| 855 |
+
return image_file.name
|
| 856 |
+
return None
|
| 857 |
+
|
| 858 |
+
|
| 859 |
+
def update_goal_preview(goal_file):
|
| 860 |
+
"""Update the goal preview."""
|
| 861 |
+
if goal_file:
|
| 862 |
+
return goal_file.name
|
| 863 |
+
return None
|
| 864 |
+
|
| 865 |
+
|
| 866 |
+
def get_download_link(selected_frame, all_paths):
|
| 867 |
+
"""Update the download button with the selected file path."""
|
| 868 |
+
if not selected_frame or not all_paths:
|
| 869 |
+
return gr.update(visible=False, value=None)
|
| 870 |
+
|
| 871 |
+
frame_num = int(re.search(r"Frame (\d+)", selected_frame).group(1))
|
| 872 |
+
|
| 873 |
+
for path in all_paths:
|
| 874 |
+
if f"frame_{frame_num}" in path:
|
| 875 |
+
# Make sure the file exists before setting it
|
| 876 |
+
if os.path.exists(path):
|
| 877 |
+
return gr.update(visible=True, value=path, interactive=True)
|
| 878 |
+
|
| 879 |
+
return gr.update(visible=False, value=None)
|
| 880 |
+
|
| 881 |
+
|
| 882 |
+
# Theme setup
|
| 883 |
+
theme = gr.themes.Default(
|
| 884 |
+
primary_hue="blue",
|
| 885 |
+
secondary_hue="cyan",
|
| 886 |
+
)
|
| 887 |
+
|
| 888 |
+
with gr.Blocks(
|
| 889 |
+
theme=theme,
|
| 890 |
+
css="""
|
| 891 |
+
.output-column {
|
| 892 |
+
min-height: 400px;
|
| 893 |
+
}
|
| 894 |
+
.warning {
|
| 895 |
+
color: #ff9800;
|
| 896 |
+
font-weight: bold;
|
| 897 |
+
}
|
| 898 |
+
.highlight {
|
| 899 |
+
background-color: rgba(0, 123, 255, 0.1);
|
| 900 |
+
padding: 10px;
|
| 901 |
+
border-radius: 8px;
|
| 902 |
+
border-left: 5px solid #007bff;
|
| 903 |
+
margin: 10px 0;
|
| 904 |
+
}
|
| 905 |
+
.task-header {
|
| 906 |
+
margin-top: 10px;
|
| 907 |
+
margin-bottom: 15px;
|
| 908 |
+
font-size: 1.2em;
|
| 909 |
+
font-weight: bold;
|
| 910 |
+
color: #007bff;
|
| 911 |
+
}
|
| 912 |
+
.flex-display {
|
| 913 |
+
display: flex;
|
| 914 |
+
flex-wrap: wrap;
|
| 915 |
+
gap: 10px;
|
| 916 |
+
}
|
| 917 |
+
.output-subtitle {
|
| 918 |
+
font-size: 1.1em;
|
| 919 |
+
margin-top: 5px;
|
| 920 |
+
margin-bottom: 5px;
|
| 921 |
+
color: #505050;
|
| 922 |
+
}
|
| 923 |
+
.input-section, .params-section, .advanced-section {
|
| 924 |
+
border: 1px solid #ddd;
|
| 925 |
+
padding: 15px;
|
| 926 |
+
border-radius: 8px;
|
| 927 |
+
margin-bottom: 15px;
|
| 928 |
+
}
|
| 929 |
+
.logo-container {
|
| 930 |
+
display: flex;
|
| 931 |
+
justify-content: center;
|
| 932 |
+
margin-bottom: 20px;
|
| 933 |
+
}
|
| 934 |
+
.logo-image {
|
| 935 |
+
max-width: 300px;
|
| 936 |
+
height: auto;
|
| 937 |
+
}
|
| 938 |
+
""",
|
| 939 |
+
) as demo:
|
| 940 |
+
with gr.Row(elem_classes=["logo-container"]):
|
| 941 |
+
gr.Image("assets/logo.png", show_label=False, elem_classes=["logo-image"])
|
| 942 |
+
|
| 943 |
+
gr.Markdown(
|
| 944 |
+
"""
|
| 945 |
+
# Aether: Geometric-Aware Unified World Modeling
|
| 946 |
+
|
| 947 |
+
Aether addresses a fundamental challenge in AI: integrating geometric reconstruction with
|
| 948 |
+
generative modeling for human-like spatial reasoning. Our framework unifies three core capabilities:
|
| 949 |
+
|
| 950 |
+
1. **4D dynamic reconstruction** - Reconstruct dynamic point clouds from videos by estimating depths and camera poses.
|
| 951 |
+
2. **Action-Conditioned Video Prediction** - Predict future frames based on initial observation images, with optional conditions of camera trajectory actions.
|
| 952 |
+
3. **Goal-Conditioned Visual Planning** - Generate planning paths from pairs of observation and goal images.
|
| 953 |
+
|
| 954 |
+
Trained entirely on synthetic data, Aether achieves strong zero-shot generalization to real-world scenarios.
|
| 955 |
+
"""
|
| 956 |
+
)
|
| 957 |
+
|
| 958 |
+
with gr.Row():
|
| 959 |
+
with gr.Column(scale=1):
|
| 960 |
+
task = gr.Radio(
|
| 961 |
+
["reconstruction", "prediction", "planning"],
|
| 962 |
+
label="Select Task",
|
| 963 |
+
value="reconstruction",
|
| 964 |
+
info="Choose the task you want to perform",
|
| 965 |
+
)
|
| 966 |
+
|
| 967 |
+
with gr.Group(elem_classes=["input-section"]):
|
| 968 |
+
# Input section - changes based on task
|
| 969 |
+
gr.Markdown("## 📥 Input", elem_classes=["task-header"])
|
| 970 |
+
|
| 971 |
+
# Task-specific inputs
|
| 972 |
+
video_input = gr.Video(
|
| 973 |
+
label="Upload Input Video",
|
| 974 |
+
sources=["upload"],
|
| 975 |
+
visible=True,
|
| 976 |
+
interactive=True,
|
| 977 |
+
elem_id="video_input",
|
| 978 |
+
)
|
| 979 |
+
|
| 980 |
+
image_input = gr.File(
|
| 981 |
+
label="Upload Start Image",
|
| 982 |
+
file_count="single",
|
| 983 |
+
file_types=["image"],
|
| 984 |
+
visible=False,
|
| 985 |
+
interactive=True,
|
| 986 |
+
elem_id="image_input",
|
| 987 |
+
)
|
| 988 |
+
|
| 989 |
+
goal_input = gr.File(
|
| 990 |
+
label="Upload Goal Image",
|
| 991 |
+
file_count="single",
|
| 992 |
+
file_types=["image"],
|
| 993 |
+
visible=False,
|
| 994 |
+
interactive=True,
|
| 995 |
+
elem_id="goal_input",
|
| 996 |
+
)
|
| 997 |
+
|
| 998 |
+
with gr.Row(visible=False) as preview_row:
|
| 999 |
+
image_preview = gr.Image(
|
| 1000 |
+
label="Start Image Preview",
|
| 1001 |
+
elem_id="image_preview",
|
| 1002 |
+
visible=False,
|
| 1003 |
+
)
|
| 1004 |
+
goal_preview = gr.Image(
|
| 1005 |
+
label="Goal Image Preview",
|
| 1006 |
+
elem_id="goal_preview",
|
| 1007 |
+
visible=False,
|
| 1008 |
+
)
|
| 1009 |
+
|
| 1010 |
+
with gr.Group(elem_classes=["params-section"]):
|
| 1011 |
+
gr.Markdown("## ⚙️ Parameters", elem_classes=["task-header"])
|
| 1012 |
+
|
| 1013 |
+
with gr.Row():
|
| 1014 |
+
with gr.Column(scale=1):
|
| 1015 |
+
height = gr.Dropdown(
|
| 1016 |
+
choices=[480],
|
| 1017 |
+
value=480,
|
| 1018 |
+
label="Height",
|
| 1019 |
+
info="Height of the output video",
|
| 1020 |
+
)
|
| 1021 |
+
|
| 1022 |
+
with gr.Column(scale=1):
|
| 1023 |
+
width = gr.Dropdown(
|
| 1024 |
+
choices=[720],
|
| 1025 |
+
value=720,
|
| 1026 |
+
label="Width",
|
| 1027 |
+
info="Width of the output video",
|
| 1028 |
+
)
|
| 1029 |
+
|
| 1030 |
+
with gr.Row():
|
| 1031 |
+
with gr.Column(scale=1):
|
| 1032 |
+
num_frames = gr.Dropdown(
|
| 1033 |
+
choices=[17, 25, 33, 41],
|
| 1034 |
+
value=41,
|
| 1035 |
+
label="Number of Frames",
|
| 1036 |
+
info="Number of frames to predict",
|
| 1037 |
+
)
|
| 1038 |
+
|
| 1039 |
+
with gr.Column(scale=1):
|
| 1040 |
+
fps = gr.Dropdown(
|
| 1041 |
+
choices=[8, 10, 12, 15, 24],
|
| 1042 |
+
value=12,
|
| 1043 |
+
label="FPS",
|
| 1044 |
+
info="Frames per second",
|
| 1045 |
+
)
|
| 1046 |
+
|
| 1047 |
+
with gr.Row():
|
| 1048 |
+
with gr.Column(scale=1):
|
| 1049 |
+
num_inference_steps = gr.Slider(
|
| 1050 |
+
minimum=1,
|
| 1051 |
+
maximum=60,
|
| 1052 |
+
value=4,
|
| 1053 |
+
step=1,
|
| 1054 |
+
label="Inference Steps",
|
| 1055 |
+
info="Number of inference step",
|
| 1056 |
+
)
|
| 1057 |
+
|
| 1058 |
+
sliding_window_stride = gr.Slider(
|
| 1059 |
+
minimum=1,
|
| 1060 |
+
maximum=40,
|
| 1061 |
+
value=24,
|
| 1062 |
+
step=1,
|
| 1063 |
+
label="Sliding Window Stride",
|
| 1064 |
+
info="Sliding window stride (window size equals to num_frames). Only used for 'reconstruction' task",
|
| 1065 |
+
visible=True,
|
| 1066 |
+
)
|
| 1067 |
+
|
| 1068 |
+
use_dynamic_cfg = gr.Checkbox(
|
| 1069 |
+
label="Use Dynamic CFG",
|
| 1070 |
+
value=True,
|
| 1071 |
+
info="Use dynamic CFG",
|
| 1072 |
+
visible=False,
|
| 1073 |
+
)
|
| 1074 |
+
|
| 1075 |
+
raymap_option = gr.Radio(
|
| 1076 |
+
choices=["backward", "forward_right", "left_forward", "right"],
|
| 1077 |
+
label="Camera Movement Direction",
|
| 1078 |
+
value="forward_right",
|
| 1079 |
+
info="Direction of camera action. We offer 4 pre-defined actions for you to choose from.",
|
| 1080 |
+
visible=False,
|
| 1081 |
+
)
|
| 1082 |
+
|
| 1083 |
+
post_reconstruction = gr.Checkbox(
|
| 1084 |
+
label="Post-Reconstruction",
|
| 1085 |
+
value=True,
|
| 1086 |
+
info="Run reconstruction after prediction for better quality",
|
| 1087 |
+
visible=False,
|
| 1088 |
+
)
|
| 1089 |
+
|
| 1090 |
+
with gr.Accordion(
|
| 1091 |
+
"Advanced Options", open=False, visible=True
|
| 1092 |
+
) as advanced_options:
|
| 1093 |
+
with gr.Group(elem_classes=["advanced-section"]):
|
| 1094 |
+
with gr.Row():
|
| 1095 |
+
with gr.Column(scale=1):
|
| 1096 |
+
guidance_scale = gr.Slider(
|
| 1097 |
+
minimum=1.0,
|
| 1098 |
+
maximum=10.0,
|
| 1099 |
+
value=1.0,
|
| 1100 |
+
step=0.1,
|
| 1101 |
+
label="Guidance Scale",
|
| 1102 |
+
info="Guidance scale (only for prediction / planning)",
|
| 1103 |
+
)
|
| 1104 |
+
|
| 1105 |
+
with gr.Row():
|
| 1106 |
+
with gr.Column(scale=1):
|
| 1107 |
+
seed = gr.Number(
|
| 1108 |
+
value=42,
|
| 1109 |
+
label="Random Seed",
|
| 1110 |
+
info="Set a seed for reproducible results",
|
| 1111 |
+
precision=0,
|
| 1112 |
+
minimum=0,
|
| 1113 |
+
maximum=2147483647,
|
| 1114 |
+
)
|
| 1115 |
+
|
| 1116 |
+
with gr.Row():
|
| 1117 |
+
with gr.Column(scale=1):
|
| 1118 |
+
smooth_camera = gr.Checkbox(
|
| 1119 |
+
label="Smooth Camera",
|
| 1120 |
+
value=True,
|
| 1121 |
+
info="Apply smoothing to camera trajectory",
|
| 1122 |
+
)
|
| 1123 |
+
|
| 1124 |
+
with gr.Column(scale=1):
|
| 1125 |
+
align_pointmaps = gr.Checkbox(
|
| 1126 |
+
label="Align Point Maps",
|
| 1127 |
+
value=False,
|
| 1128 |
+
info="Align point maps across frames",
|
| 1129 |
+
)
|
| 1130 |
+
|
| 1131 |
+
with gr.Row():
|
| 1132 |
+
with gr.Column(scale=1):
|
| 1133 |
+
max_depth = gr.Slider(
|
| 1134 |
+
minimum=10,
|
| 1135 |
+
maximum=200,
|
| 1136 |
+
value=60,
|
| 1137 |
+
step=10,
|
| 1138 |
+
label="Max Depth",
|
| 1139 |
+
info="Maximum depth for point cloud (higher = more distant points)",
|
| 1140 |
+
)
|
| 1141 |
+
|
| 1142 |
+
with gr.Column(scale=1):
|
| 1143 |
+
rtol = gr.Slider(
|
| 1144 |
+
minimum=0.01,
|
| 1145 |
+
maximum=2.0,
|
| 1146 |
+
value=0.03,
|
| 1147 |
+
step=0.01,
|
| 1148 |
+
label="Relative Tolerance",
|
| 1149 |
+
info="Used for depth edge detection. Lower = remove more edges",
|
| 1150 |
+
)
|
| 1151 |
+
|
| 1152 |
+
pointcloud_save_frame_interval = gr.Slider(
|
| 1153 |
+
minimum=1,
|
| 1154 |
+
maximum=20,
|
| 1155 |
+
value=10,
|
| 1156 |
+
step=1,
|
| 1157 |
+
label="Point Cloud Frame Interval",
|
| 1158 |
+
info="Save point cloud every N frames (higher = fewer files but less complete representation)",
|
| 1159 |
+
)
|
| 1160 |
+
|
| 1161 |
+
run_button = gr.Button("Run Aether", variant="primary")
|
| 1162 |
+
|
| 1163 |
+
with gr.Column(scale=1, elem_classes=["output-column"]):
|
| 1164 |
+
with gr.Group():
|
| 1165 |
+
gr.Markdown("## 📤 Output", elem_classes=["task-header"])
|
| 1166 |
+
|
| 1167 |
+
gr.Markdown("### RGB Video", elem_classes=["output-subtitle"])
|
| 1168 |
+
rgb_output = gr.Video(
|
| 1169 |
+
label="RGB Output", interactive=False, elem_id="rgb_output"
|
| 1170 |
+
)
|
| 1171 |
+
|
| 1172 |
+
gr.Markdown("### Depth Video", elem_classes=["output-subtitle"])
|
| 1173 |
+
depth_output = gr.Video(
|
| 1174 |
+
label="Depth Output", interactive=False, elem_id="depth_output"
|
| 1175 |
+
)
|
| 1176 |
+
|
| 1177 |
+
gr.Markdown("### Point Clouds", elem_classes=["output-subtitle"])
|
| 1178 |
+
with gr.Row(elem_classes=["flex-display"]):
|
| 1179 |
+
pointcloud_frames = gr.Dropdown(
|
| 1180 |
+
label="Select Frame",
|
| 1181 |
+
choices=[],
|
| 1182 |
+
value=None,
|
| 1183 |
+
interactive=True,
|
| 1184 |
+
elem_id="pointcloud_frames",
|
| 1185 |
+
)
|
| 1186 |
+
pointcloud_download = gr.DownloadButton(
|
| 1187 |
+
label="Download Point Cloud",
|
| 1188 |
+
visible=False,
|
| 1189 |
+
elem_id="pointcloud_download",
|
| 1190 |
+
)
|
| 1191 |
+
|
| 1192 |
+
model_output = gr.Model3D(
|
| 1193 |
+
label="Point Cloud Viewer", interactive=True, elem_id="model_output"
|
| 1194 |
+
)
|
| 1195 |
+
|
| 1196 |
+
with gr.Tab("About Results"):
|
| 1197 |
+
gr.Markdown(
|
| 1198 |
+
"""
|
| 1199 |
+
### Understanding the Outputs
|
| 1200 |
+
|
| 1201 |
+
- **RGB Video**: Shows the predicted or reconstructed RGB frames
|
| 1202 |
+
- **Depth Video**: Visualizes the disparity maps in color (closer = red, further = blue)
|
| 1203 |
+
- **Point Clouds**: Interactive 3D point cloud with camera positions shown as colored pyramids
|
| 1204 |
+
|
| 1205 |
+
<p class="warning">Note: 3D point clouds take a long time to visualize, and we show the keyframes only.
|
| 1206 |
+
You can control the keyframe interval by modifying the `pointcloud_save_frame_interval`.</p>
|
| 1207 |
+
"""
|
| 1208 |
+
)
|
| 1209 |
+
|
| 1210 |
+
# Event handlers
|
| 1211 |
+
task.change(
|
| 1212 |
+
fn=update_task_ui,
|
| 1213 |
+
inputs=[task],
|
| 1214 |
+
outputs=[
|
| 1215 |
+
video_input,
|
| 1216 |
+
image_input,
|
| 1217 |
+
goal_input,
|
| 1218 |
+
image_preview,
|
| 1219 |
+
goal_preview,
|
| 1220 |
+
num_inference_steps,
|
| 1221 |
+
sliding_window_stride,
|
| 1222 |
+
use_dynamic_cfg,
|
| 1223 |
+
raymap_option,
|
| 1224 |
+
post_reconstruction,
|
| 1225 |
+
guidance_scale,
|
| 1226 |
+
],
|
| 1227 |
+
)
|
| 1228 |
+
|
| 1229 |
+
image_input.change(
|
| 1230 |
+
fn=update_image_preview, inputs=[image_input], outputs=[image_preview]
|
| 1231 |
+
).then(fn=lambda: gr.update(visible=True), inputs=[], outputs=[preview_row])
|
| 1232 |
+
|
| 1233 |
+
goal_input.change(
|
| 1234 |
+
fn=update_goal_preview, inputs=[goal_input], outputs=[goal_preview]
|
| 1235 |
+
).then(fn=lambda: gr.update(visible=True), inputs=[], outputs=[preview_row])
|
| 1236 |
+
|
| 1237 |
+
def update_pointcloud_frames(pointcloud_paths):
|
| 1238 |
+
"""Update the pointcloud frames dropdown with available frames."""
|
| 1239 |
+
if not pointcloud_paths:
|
| 1240 |
+
return gr.update(choices=[], value=None), None, gr.update(visible=False)
|
| 1241 |
+
|
| 1242 |
+
# Extract frame numbers from filenames
|
| 1243 |
+
frame_info = []
|
| 1244 |
+
for path in pointcloud_paths:
|
| 1245 |
+
filename = os.path.basename(path)
|
| 1246 |
+
match = re.search(r"frame_(\d+)", filename)
|
| 1247 |
+
if match:
|
| 1248 |
+
frame_num = int(match.group(1))
|
| 1249 |
+
frame_info.append((f"Frame {frame_num}", path))
|
| 1250 |
+
|
| 1251 |
+
# Sort by frame number
|
| 1252 |
+
frame_info.sort(key=lambda x: int(re.search(r"Frame (\d+)", x[0]).group(1)))
|
| 1253 |
+
|
| 1254 |
+
choices = [label for label, _ in frame_info]
|
| 1255 |
+
paths = [path for _, path in frame_info]
|
| 1256 |
+
|
| 1257 |
+
if not choices:
|
| 1258 |
+
return gr.update(choices=[], value=None), None, gr.update(visible=False)
|
| 1259 |
+
|
| 1260 |
+
# Make download button visible when we have point cloud files
|
| 1261 |
+
return (
|
| 1262 |
+
gr.update(choices=choices, value=choices[0]),
|
| 1263 |
+
paths[0],
|
| 1264 |
+
gr.update(visible=True),
|
| 1265 |
+
)
|
| 1266 |
+
|
| 1267 |
+
def select_pointcloud_frame(frame_label, all_paths):
|
| 1268 |
+
"""Select a specific pointcloud frame."""
|
| 1269 |
+
if not frame_label or not all_paths:
|
| 1270 |
+
return None
|
| 1271 |
+
|
| 1272 |
+
frame_num = int(re.search(r"Frame (\d+)", frame_label).group(1))
|
| 1273 |
+
|
| 1274 |
+
for path in all_paths:
|
| 1275 |
+
if f"frame_{frame_num}" in path:
|
| 1276 |
+
return path
|
| 1277 |
+
|
| 1278 |
+
return None
|
| 1279 |
+
|
| 1280 |
+
# Then in the run button click handler:
|
| 1281 |
+
def process_task(task_type, *args):
|
| 1282 |
+
"""Process selected task with appropriate function."""
|
| 1283 |
+
if task_type == "reconstruction":
|
| 1284 |
+
rgb_path, depth_path, pointcloud_paths = process_reconstruction(*args)
|
| 1285 |
+
# Update the pointcloud frames dropdown
|
| 1286 |
+
frame_dropdown, initial_path, download_visible = update_pointcloud_frames(
|
| 1287 |
+
pointcloud_paths
|
| 1288 |
+
)
|
| 1289 |
+
return (
|
| 1290 |
+
rgb_path,
|
| 1291 |
+
depth_path,
|
| 1292 |
+
initial_path,
|
| 1293 |
+
frame_dropdown,
|
| 1294 |
+
pointcloud_paths,
|
| 1295 |
+
download_visible,
|
| 1296 |
+
)
|
| 1297 |
+
elif task_type == "prediction":
|
| 1298 |
+
rgb_path, depth_path, pointcloud_paths = process_prediction(*args)
|
| 1299 |
+
frame_dropdown, initial_path, download_visible = update_pointcloud_frames(
|
| 1300 |
+
pointcloud_paths
|
| 1301 |
+
)
|
| 1302 |
+
return (
|
| 1303 |
+
rgb_path,
|
| 1304 |
+
depth_path,
|
| 1305 |
+
initial_path,
|
| 1306 |
+
frame_dropdown,
|
| 1307 |
+
pointcloud_paths,
|
| 1308 |
+
download_visible,
|
| 1309 |
+
)
|
| 1310 |
+
elif task_type == "planning":
|
| 1311 |
+
rgb_path, depth_path, pointcloud_paths = process_planning(*args)
|
| 1312 |
+
frame_dropdown, initial_path, download_visible = update_pointcloud_frames(
|
| 1313 |
+
pointcloud_paths
|
| 1314 |
+
)
|
| 1315 |
+
return (
|
| 1316 |
+
rgb_path,
|
| 1317 |
+
depth_path,
|
| 1318 |
+
initial_path,
|
| 1319 |
+
frame_dropdown,
|
| 1320 |
+
pointcloud_paths,
|
| 1321 |
+
download_visible,
|
| 1322 |
+
)
|
| 1323 |
+
return (
|
| 1324 |
+
None,
|
| 1325 |
+
None,
|
| 1326 |
+
None,
|
| 1327 |
+
gr.update(choices=[], value=None),
|
| 1328 |
+
[],
|
| 1329 |
+
gr.update(visible=False),
|
| 1330 |
+
)
|
| 1331 |
+
|
| 1332 |
+
# Store all pointcloud paths for later use
|
| 1333 |
+
all_pointcloud_paths = gr.State([])
|
| 1334 |
+
|
| 1335 |
+
run_button.click(
|
| 1336 |
+
fn=lambda task_type,
|
| 1337 |
+
video_file,
|
| 1338 |
+
image_file,
|
| 1339 |
+
goal_file,
|
| 1340 |
+
height,
|
| 1341 |
+
width,
|
| 1342 |
+
num_frames,
|
| 1343 |
+
num_inference_steps,
|
| 1344 |
+
guidance_scale,
|
| 1345 |
+
sliding_window_stride,
|
| 1346 |
+
use_dynamic_cfg,
|
| 1347 |
+
raymap_option,
|
| 1348 |
+
post_reconstruction,
|
| 1349 |
+
fps,
|
| 1350 |
+
smooth_camera,
|
| 1351 |
+
align_pointmaps,
|
| 1352 |
+
max_depth,
|
| 1353 |
+
rtol,
|
| 1354 |
+
pointcloud_save_frame_interval,
|
| 1355 |
+
seed: process_task(
|
| 1356 |
+
task_type,
|
| 1357 |
+
*(
|
| 1358 |
+
[
|
| 1359 |
+
video_file,
|
| 1360 |
+
height,
|
| 1361 |
+
width,
|
| 1362 |
+
num_frames,
|
| 1363 |
+
num_inference_steps,
|
| 1364 |
+
guidance_scale,
|
| 1365 |
+
sliding_window_stride,
|
| 1366 |
+
fps,
|
| 1367 |
+
smooth_camera,
|
| 1368 |
+
align_pointmaps,
|
| 1369 |
+
max_depth,
|
| 1370 |
+
rtol,
|
| 1371 |
+
pointcloud_save_frame_interval,
|
| 1372 |
+
seed,
|
| 1373 |
+
]
|
| 1374 |
+
if task_type == "reconstruction"
|
| 1375 |
+
else [
|
| 1376 |
+
image_file,
|
| 1377 |
+
height,
|
| 1378 |
+
width,
|
| 1379 |
+
num_frames,
|
| 1380 |
+
num_inference_steps,
|
| 1381 |
+
guidance_scale,
|
| 1382 |
+
use_dynamic_cfg,
|
| 1383 |
+
raymap_option,
|
| 1384 |
+
post_reconstruction,
|
| 1385 |
+
fps,
|
| 1386 |
+
smooth_camera,
|
| 1387 |
+
align_pointmaps,
|
| 1388 |
+
max_depth,
|
| 1389 |
+
rtol,
|
| 1390 |
+
pointcloud_save_frame_interval,
|
| 1391 |
+
seed,
|
| 1392 |
+
]
|
| 1393 |
+
if task_type == "prediction"
|
| 1394 |
+
else [
|
| 1395 |
+
image_file,
|
| 1396 |
+
goal_file,
|
| 1397 |
+
height,
|
| 1398 |
+
width,
|
| 1399 |
+
num_frames,
|
| 1400 |
+
num_inference_steps,
|
| 1401 |
+
guidance_scale,
|
| 1402 |
+
use_dynamic_cfg,
|
| 1403 |
+
post_reconstruction,
|
| 1404 |
+
fps,
|
| 1405 |
+
smooth_camera,
|
| 1406 |
+
align_pointmaps,
|
| 1407 |
+
max_depth,
|
| 1408 |
+
rtol,
|
| 1409 |
+
pointcloud_save_frame_interval,
|
| 1410 |
+
seed,
|
| 1411 |
+
]
|
| 1412 |
+
),
|
| 1413 |
+
),
|
| 1414 |
+
inputs=[
|
| 1415 |
+
task,
|
| 1416 |
+
video_input,
|
| 1417 |
+
image_input,
|
| 1418 |
+
goal_input,
|
| 1419 |
+
height,
|
| 1420 |
+
width,
|
| 1421 |
+
num_frames,
|
| 1422 |
+
num_inference_steps,
|
| 1423 |
+
guidance_scale,
|
| 1424 |
+
sliding_window_stride,
|
| 1425 |
+
use_dynamic_cfg,
|
| 1426 |
+
raymap_option,
|
| 1427 |
+
post_reconstruction,
|
| 1428 |
+
fps,
|
| 1429 |
+
smooth_camera,
|
| 1430 |
+
align_pointmaps,
|
| 1431 |
+
max_depth,
|
| 1432 |
+
rtol,
|
| 1433 |
+
pointcloud_save_frame_interval,
|
| 1434 |
+
seed,
|
| 1435 |
+
],
|
| 1436 |
+
outputs=[
|
| 1437 |
+
rgb_output,
|
| 1438 |
+
depth_output,
|
| 1439 |
+
model_output,
|
| 1440 |
+
pointcloud_frames,
|
| 1441 |
+
all_pointcloud_paths,
|
| 1442 |
+
pointcloud_download,
|
| 1443 |
+
],
|
| 1444 |
+
)
|
| 1445 |
+
|
| 1446 |
+
pointcloud_frames.change(
|
| 1447 |
+
fn=select_pointcloud_frame,
|
| 1448 |
+
inputs=[pointcloud_frames, all_pointcloud_paths],
|
| 1449 |
+
outputs=[model_output],
|
| 1450 |
+
).then(
|
| 1451 |
+
fn=get_download_link,
|
| 1452 |
+
inputs=[pointcloud_frames, all_pointcloud_paths],
|
| 1453 |
+
outputs=[pointcloud_download],
|
| 1454 |
+
)
|
| 1455 |
+
|
| 1456 |
+
# Example Accordion
|
| 1457 |
+
with gr.Accordion("Examples"):
|
| 1458 |
+
gr.Markdown(
|
| 1459 |
+
"""
|
| 1460 |
+
### Examples will be added soon
|
| 1461 |
+
Check back for example inputs for each task type.
|
| 1462 |
+
"""
|
| 1463 |
+
)
|
| 1464 |
+
|
| 1465 |
+
# Load the model at startup
|
| 1466 |
+
demo.load(lambda: build_pipeline(), inputs=None, outputs=None)
|
| 1467 |
+
|
| 1468 |
+
if __name__ == "__main__":
|
| 1469 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
| 1470 |
+
demo.queue(max_size=20).launch(show_error=True, share=True)
|