Spaces:
Runtime error
Runtime error
| from typing import List, Optional, Sequence, Tuple, Union | |
| import numpy as np | |
| import torch | |
| from torch import distributed as tdist, nn as nn | |
| from torch.nn import functional as F | |
| import dist | |
| # this file only provides the VectorQuantizer2 used in VQVAE | |
| __all__ = ['VectorQuantizer2', ] | |
| class VectorQuantizer2(nn.Module): | |
| # VQGAN originally use beta=1.0, never tried 0.25; SD seems using 0.25 | |
| def __init__( | |
| self, vocab_size, Cvae, using_znorm, beta: float = 0.25, | |
| default_qresi_counts=0, v_patch_nums=None, quant_resi=0.5, share_quant_resi=4, # share_quant_resi: args.qsr | |
| ): | |
| super().__init__() | |
| self.vocab_size: int = vocab_size | |
| self.Cvae: int = Cvae | |
| self.using_znorm: bool = using_znorm | |
| self.v_patch_nums: Tuple[int] = v_patch_nums | |
| self.quant_resi_ratio = quant_resi | |
| if share_quant_resi == 0: # non-shared: \phi_{1 to K} for K scales | |
| self.quant_resi = PhiNonShared( | |
| [(Phi(Cvae, quant_resi) if abs(quant_resi) > 1e-6 else nn.Identity()) for _ in | |
| range(default_qresi_counts or len(self.v_patch_nums))]) | |
| elif share_quant_resi == 1: # fully shared: only a single \phi for K scales | |
| self.quant_resi = PhiShared(Phi(Cvae, quant_resi) if abs(quant_resi) > 1e-6 else nn.Identity()) | |
| else: # partially shared: \phi_{1 to share_quant_resi} for K scales | |
| self.quant_resi = PhiPartiallyShared(nn.ModuleList( | |
| [(Phi(Cvae, quant_resi) if abs(quant_resi) > 1e-6 else nn.Identity()) for _ in | |
| range(share_quant_resi)])) | |
| self.register_buffer('ema_vocab_hit_SV', torch.full((len(self.v_patch_nums), self.vocab_size), fill_value=0.0)) | |
| self.record_hit = 0 | |
| self.beta: float = beta | |
| self.embedding = nn.Embedding(self.vocab_size, self.Cvae) | |
| # only used for progressive training of VAR (not supported yet, will be tested and supported in the future) | |
| self.prog_si = -1 # progressive training: not supported yet, prog_si always -1 | |
| def eini(self, eini): | |
| if eini > 0: | |
| nn.init.trunc_normal_(self.embedding.weight.data, std=eini) | |
| elif eini < 0: | |
| self.embedding.weight.data.uniform_(-abs(eini) / self.vocab_size, abs(eini) / self.vocab_size) | |
| def extra_repr(self) -> str: | |
| return f'{self.v_patch_nums}, znorm={self.using_znorm}, beta={self.beta} | S={len(self.v_patch_nums)}, quant_resi={self.quant_resi_ratio}' | |
| # ===================== `forward` is only used in VAE training ===================== | |
| def forward(self, f_BChw: torch.Tensor, ret_usages=False) -> Tuple[torch.Tensor, List[float], torch.Tensor]: | |
| dtype = f_BChw.dtype | |
| if dtype != torch.float32: f_BChw = f_BChw.float() | |
| B, C, H, W = f_BChw.shape | |
| f_no_grad = f_BChw.detach() | |
| f_rest = f_no_grad.clone() | |
| f_hat = torch.zeros_like(f_rest) | |
| with torch.cuda.amp.autocast(enabled=False): | |
| mean_vq_loss: torch.Tensor = 0.0 | |
| vocab_hit_V = torch.zeros(self.vocab_size, dtype=torch.float, device=f_BChw.device) | |
| SN = len(self.v_patch_nums) | |
| for si, pn in enumerate(self.v_patch_nums): # from small to large | |
| # find the nearest embedding | |
| if self.using_znorm: | |
| rest_NC = F.interpolate(f_rest, size=(pn, pn), mode='bilinear').permute(0, 2, 3, 1).reshape(-1, | |
| C) if ( | |
| si != SN - 1) else f_rest.permute(0, 2, 3, 1).reshape(-1, C) | |
| rest_NC = F.normalize(rest_NC, dim=-1) | |
| idx_N = torch.argmax(rest_NC @ F.normalize(self.embedding.weight.data.T, dim=0), dim=1) | |
| else: | |
| rest_NC = F.interpolate(f_rest, size=(pn, pn), mode='bilinear').permute(0, 2, 3, 1).reshape(-1, | |
| C) if ( | |
| si != SN - 1) else f_rest.permute(0, 2, 3, 1).reshape(-1, C) | |
| d_no_grad = torch.sum(rest_NC.square(), dim=1, keepdim=True) + torch.sum( | |
| self.embedding.weight.data.square(), dim=1, keepdim=False) | |
| d_no_grad.addmm_(rest_NC, self.embedding.weight.data.T, alpha=-2, beta=1) # (B*h*w, vocab_size) | |
| idx_N = torch.argmin(d_no_grad, dim=1) | |
| hit_V = idx_N.bincount(minlength=self.vocab_size).float() | |
| if self.training: | |
| if dist.initialized(): handler = tdist.all_reduce(hit_V, async_op=True) | |
| # calc loss | |
| idx_Bhw = idx_N.view(B, pn, pn) | |
| h_BChw = F.interpolate(self.embedding(idx_Bhw).permute(0, 3, 1, 2), size=(H, W), | |
| mode='bilinear').contiguous() if (si != SN - 1) else self.embedding( | |
| idx_Bhw).permute(0, 3, 1, 2).contiguous() | |
| h_BChw = self.quant_resi[si / (SN - 1)](h_BChw) | |
| f_hat = f_hat + h_BChw | |
| f_rest -= h_BChw | |
| if self.training and dist.initialized(): | |
| handler.wait() | |
| if self.record_hit == 0: | |
| self.ema_vocab_hit_SV[si].copy_(hit_V) | |
| elif self.record_hit < 100: | |
| self.ema_vocab_hit_SV[si].mul_(0.9).add_(hit_V.mul(0.1)) | |
| else: | |
| self.ema_vocab_hit_SV[si].mul_(0.99).add_(hit_V.mul(0.01)) | |
| self.record_hit += 1 | |
| vocab_hit_V.add_(hit_V) | |
| mean_vq_loss += F.mse_loss(f_hat.data, f_BChw).mul_(self.beta) + F.mse_loss(f_hat, f_no_grad) | |
| mean_vq_loss *= 1. / SN | |
| f_hat = (f_hat.data - f_no_grad).add_(f_BChw) | |
| margin = tdist.get_world_size() * (f_BChw.numel() / f_BChw.shape[1]) / self.vocab_size * 0.08 | |
| # margin = pn*pn / 100 | |
| if ret_usages: | |
| usages = [(self.ema_vocab_hit_SV[si] >= margin).float().mean().item() * 100 for si, pn in | |
| enumerate(self.v_patch_nums)] | |
| else: | |
| usages = None | |
| return f_hat, usages, mean_vq_loss | |
| # ===================== `forward` is only used in VAE training ===================== | |
| def embed_to_fhat(self, ms_h_BChw: List[torch.Tensor], all_to_max_scale=True, last_one=False) -> Union[ | |
| List[torch.Tensor], torch.Tensor]: | |
| ls_f_hat_BChw = [] | |
| B = ms_h_BChw[0].shape[0] | |
| H = W = self.v_patch_nums[-1] | |
| SN = len(self.v_patch_nums) | |
| if all_to_max_scale: | |
| f_hat = ms_h_BChw[0].new_zeros(B, self.Cvae, H, W, dtype=torch.float32) | |
| for si, pn in enumerate(self.v_patch_nums): # from small to large | |
| h_BChw = ms_h_BChw[si] | |
| if si < len(self.v_patch_nums) - 1: | |
| h_BChw = F.interpolate(h_BChw, size=(H, W), mode='bilinear') | |
| h_BChw = self.quant_resi[si / (SN - 1)](h_BChw) | |
| f_hat.add_(h_BChw) | |
| if last_one: | |
| ls_f_hat_BChw = f_hat | |
| else: | |
| ls_f_hat_BChw.append(f_hat.clone()) | |
| else: | |
| # WARNING: this is not the case in VQ-VAE training or inference (we'll interpolate every token map to the max H W, like above) | |
| # WARNING: this should only be used for experimental purpose | |
| f_hat = ms_h_BChw[0].new_zeros(B, self.Cvae, self.v_patch_nums[0], self.v_patch_nums[0], | |
| dtype=torch.float32) | |
| for si, pn in enumerate(self.v_patch_nums): # from small to large | |
| f_hat = F.interpolate(f_hat, size=(pn, pn), mode='bilinear') | |
| h_BChw = self.quant_resi[si / (SN - 1)](ms_h_BChw[si]) | |
| f_hat.add_(h_BChw) | |
| if last_one: | |
| ls_f_hat_BChw = f_hat | |
| else: | |
| ls_f_hat_BChw.append(f_hat) | |
| return ls_f_hat_BChw | |
| def f_to_idxBl_or_fhat(self, f_BChw: torch.Tensor, to_fhat: bool, | |
| v_patch_nums: Optional[Sequence[Union[int, Tuple[int, int]]]] = None) -> List[ | |
| Union[torch.Tensor, torch.LongTensor]]: # z_BChw is the feature from inp_img_no_grad | |
| B, C, H, W = f_BChw.shape | |
| f_no_grad = f_BChw.detach() | |
| f_rest = f_no_grad.clone() | |
| f_hat = torch.zeros_like(f_rest) | |
| f_hat_or_idx_Bl: List[torch.Tensor] = [] | |
| patch_hws = [(pn, pn) if isinstance(pn, int) else (pn[0], pn[1]) for pn in | |
| (v_patch_nums or self.v_patch_nums)] # from small to large | |
| assert patch_hws[-1][0] == H and patch_hws[-1][1] == W, f'{patch_hws[-1]=} != ({H=}, {W=})' | |
| SN = len(patch_hws) | |
| for si, (ph, pw) in enumerate(patch_hws): # from small to large | |
| if 0 <= self.prog_si < si: break # progressive training: not supported yet, prog_si always -1 | |
| # find the nearest embedding | |
| z_NC = F.interpolate(f_rest, size=(ph, pw), mode='bilinear').permute(0, 2, 3, 1).reshape(-1, C) if ( | |
| si != SN - 1) else f_rest.permute(0, 2, 3, 1).reshape(-1, C) | |
| if self.using_znorm: | |
| z_NC = F.normalize(z_NC, dim=-1) | |
| idx_N = torch.argmax(z_NC @ F.normalize(self.embedding.weight.data.T, dim=0), dim=1) | |
| else: | |
| d_no_grad = torch.sum(z_NC.square(), dim=1, keepdim=True) + torch.sum( | |
| self.embedding.weight.data.square(), dim=1, keepdim=False) | |
| d_no_grad.addmm_(z_NC, self.embedding.weight.data.T, alpha=-2, beta=1) # (B*h*w, vocab_size) | |
| idx_N = torch.argmin(d_no_grad, dim=1) | |
| idx_Bhw = idx_N.view(B, ph, pw) | |
| h_BChw = F.interpolate(self.embedding(idx_Bhw).permute(0, 3, 1, 2), size=(H, W), | |
| mode='bilinear').contiguous() if (si != SN - 1) else self.embedding(idx_Bhw).permute( | |
| 0, 3, 1, 2).contiguous() | |
| h_BChw = self.quant_resi[si / (SN - 1)](h_BChw) | |
| f_hat.add_(h_BChw) | |
| f_rest.sub_(h_BChw) | |
| f_hat_or_idx_Bl.append(f_hat.clone() if to_fhat else idx_N.reshape(B, ph * pw)) | |
| return f_hat_or_idx_Bl | |
| # ===================== idxBl_to_var_input: only used in VAR training, for getting teacher-forcing input ===================== | |
| def idxBl_to_var_input(self, gt_ms_idx_Bl: List[torch.Tensor]) -> torch.Tensor: | |
| next_scales = [] | |
| B = gt_ms_idx_Bl[0].shape[0] | |
| C = self.Cvae | |
| H = W = self.v_patch_nums[-1] | |
| SN = len(self.v_patch_nums) | |
| f_hat = gt_ms_idx_Bl[0].new_zeros(B, C, H, W, dtype=torch.float32) | |
| pn_next: int = self.v_patch_nums[0] | |
| for si in range(SN - 1): | |
| if self.prog_si == 0 or ( | |
| 0 <= self.prog_si - 1 < si): break # progressive training: not supported yet, prog_si always -1 | |
| h_BChw = F.interpolate(self.embedding(gt_ms_idx_Bl[si]).transpose_(1, 2).view(B, C, pn_next, pn_next), | |
| size=(H, W), mode='bilinear') | |
| f_hat.add_(self.quant_resi[si / (SN - 1)](h_BChw)) | |
| pn_next = self.v_patch_nums[si + 1] | |
| next_scales.append( | |
| F.interpolate(f_hat, size=(pn_next, pn_next), mode='bilinear').view(B, C, -1).transpose(1, 2)) | |
| return torch.cat(next_scales, dim=1) if len(next_scales) else None # cat BlCs to BLC, this should be float32 | |
| # ===================== get_next_autoregressive_input: only used in VAR inference, for getting next step's input ===================== | |
| def get_next_autoregressive_input(self, si: int, SN: int, f_hat: torch.Tensor, h_BChw: torch.Tensor) -> Tuple[ | |
| Optional[torch.Tensor], torch.Tensor]: # only used in VAR inference | |
| HW = self.v_patch_nums[-1] | |
| if si != SN - 1: | |
| h = self.quant_resi[si / (SN - 1)]( | |
| F.interpolate(h_BChw, size=(HW, HW), mode='bilinear')) # conv after upsample | |
| f_hat.add_(h) | |
| return f_hat, F.interpolate(f_hat, size=(self.v_patch_nums[si + 1], self.v_patch_nums[si + 1]), | |
| mode='bilinear') | |
| else: | |
| h = self.quant_resi[si / (SN - 1)](h_BChw) | |
| f_hat.add_(h) | |
| return f_hat, f_hat | |
| class Phi(nn.Conv2d): | |
| def __init__(self, embed_dim, quant_resi): | |
| ks = 3 | |
| super().__init__(in_channels=embed_dim, out_channels=embed_dim, kernel_size=ks, stride=1, padding=ks // 2) | |
| self.resi_ratio = abs(quant_resi) | |
| def forward(self, h_BChw): | |
| return h_BChw.mul(1 - self.resi_ratio) + super().forward(h_BChw).mul_(self.resi_ratio) | |
| class PhiShared(nn.Module): | |
| def __init__(self, qresi: Phi): | |
| super().__init__() | |
| self.qresi: Phi = qresi | |
| def __getitem__(self, _) -> Phi: | |
| return self.qresi | |
| class PhiPartiallyShared(nn.Module): | |
| def __init__(self, qresi_ls: nn.ModuleList): | |
| super().__init__() | |
| self.qresi_ls = qresi_ls | |
| K = len(qresi_ls) | |
| self.ticks = np.linspace(1 / 3 / K, 1 - 1 / 3 / K, K) if K == 4 else np.linspace(1 / 2 / K, 1 - 1 / 2 / K, K) | |
| def __getitem__(self, at_from_0_to_1: float) -> Phi: | |
| return self.qresi_ls[np.argmin(np.abs(self.ticks - at_from_0_to_1)).item()] | |
| def extra_repr(self) -> str: | |
| return f'ticks={self.ticks}' | |
| class PhiNonShared(nn.ModuleList): | |
| def __init__(self, qresi: List): | |
| super().__init__(qresi) | |
| # self.qresi = qresi | |
| K = len(qresi) | |
| self.ticks = np.linspace(1 / 3 / K, 1 - 1 / 3 / K, K) if K == 4 else np.linspace(1 / 2 / K, 1 - 1 / 2 / K, K) | |
| def __getitem__(self, at_from_0_to_1: float) -> Phi: | |
| return super().__getitem__(np.argmin(np.abs(self.ticks - at_from_0_to_1)).item()) | |
| def extra_repr(self) -> str: | |
| return f'ticks={self.ticks}' | |