Spaces:
Runtime error
Runtime error
AAAAAAyq
commited on
Commit
·
2f10180
1
Parent(s):
5350ba4
Update the examples
Browse files
tools.py
CHANGED
|
@@ -3,7 +3,7 @@ from PIL import Image
|
|
| 3 |
import matplotlib.pyplot as plt
|
| 4 |
import cv2
|
| 5 |
import torch
|
| 6 |
-
import clip
|
| 7 |
|
| 8 |
|
| 9 |
def convert_box_xywh_to_xyxy(box):
|
|
@@ -290,20 +290,20 @@ def fast_show_mask_gpu(
|
|
| 290 |
return mask_cpu
|
| 291 |
|
| 292 |
|
| 293 |
-
# clip
|
| 294 |
-
@torch.no_grad()
|
| 295 |
-
def retriev(
|
| 296 |
-
|
| 297 |
-
) -> int:
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
|
| 308 |
|
| 309 |
def crop_image(annotations, image_path):
|
|
@@ -381,15 +381,15 @@ def point_prompt(masks, points, pointlabel, target_height, target_width): # num
|
|
| 381 |
return onemask, 0
|
| 382 |
|
| 383 |
|
| 384 |
-
def text_prompt(annotations, args):
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
|
|
|
| 3 |
import matplotlib.pyplot as plt
|
| 4 |
import cv2
|
| 5 |
import torch
|
| 6 |
+
# import clip
|
| 7 |
|
| 8 |
|
| 9 |
def convert_box_xywh_to_xyxy(box):
|
|
|
|
| 290 |
return mask_cpu
|
| 291 |
|
| 292 |
|
| 293 |
+
# # clip
|
| 294 |
+
# @torch.no_grad()
|
| 295 |
+
# def retriev(
|
| 296 |
+
# model, preprocess, elements, search_text: str, device
|
| 297 |
+
# ) -> int:
|
| 298 |
+
# preprocessed_images = [preprocess(image).to(device) for image in elements]
|
| 299 |
+
# tokenized_text = clip.tokenize([search_text]).to(device)
|
| 300 |
+
# stacked_images = torch.stack(preprocessed_images)
|
| 301 |
+
# image_features = model.encode_image(stacked_images)
|
| 302 |
+
# text_features = model.encode_text(tokenized_text)
|
| 303 |
+
# image_features /= image_features.norm(dim=-1, keepdim=True)
|
| 304 |
+
# text_features /= text_features.norm(dim=-1, keepdim=True)
|
| 305 |
+
# probs = 100.0 * image_features @ text_features.T
|
| 306 |
+
# return probs[:, 0].softmax(dim=0)
|
| 307 |
|
| 308 |
|
| 309 |
def crop_image(annotations, image_path):
|
|
|
|
| 381 |
return onemask, 0
|
| 382 |
|
| 383 |
|
| 384 |
+
# def text_prompt(annotations, args):
|
| 385 |
+
# cropped_boxes, cropped_images, not_crop, filter_id, annotaions = crop_image(
|
| 386 |
+
# annotations, args.img_path
|
| 387 |
+
# )
|
| 388 |
+
# clip_model, preprocess = clip.load("ViT-B/32", device=args.device)
|
| 389 |
+
# scores = retriev(
|
| 390 |
+
# clip_model, preprocess, cropped_boxes, args.text_prompt, device=args.device
|
| 391 |
+
# )
|
| 392 |
+
# max_idx = scores.argsort()
|
| 393 |
+
# max_idx = max_idx[-1]
|
| 394 |
+
# max_idx += sum(np.array(filter_id) <= int(max_idx))
|
| 395 |
+
# return annotaions[max_idx]["segmentation"], max_idx
|