Spaces:
Runtime error
Runtime error
AAAAAAyq
commited on
Commit
·
901ea42
1
Parent(s):
2f10180
Fix the everything mode bug and add point mode
Browse files- __pycache__/tools.cpython-39.pyc +0 -0
- app.py +196 -72
- tools.py +1 -35
__pycache__/tools.cpython-39.pyc
CHANGED
|
Binary files a/__pycache__/tools.cpython-39.pyc and b/__pycache__/tools.cpython-39.pyc differ
|
|
|
app.py
CHANGED
|
@@ -1,27 +1,49 @@
|
|
| 1 |
from ultralytics import YOLO
|
| 2 |
import gradio as gr
|
| 3 |
import torch
|
| 4 |
-
from tools import fast_process
|
|
|
|
|
|
|
| 5 |
|
| 6 |
# Load the pre-trained model
|
| 7 |
model = YOLO('checkpoints/FastSAM.pt')
|
| 8 |
|
|
|
|
|
|
|
| 9 |
# Description
|
| 10 |
title = "<center><strong><font size='8'>🏃 Fast Segment Anything 🤗</font></strong></center>"
|
| 11 |
|
| 12 |
-
news = """ # News
|
| 13 |
|
| 14 |
-
🔥 Add the 'Advanced options" in Everything mode to get a more detailed adjustment.
|
|
|
|
|
|
|
|
|
|
| 15 |
"""
|
| 16 |
|
| 17 |
|
| 18 |
-
# 🔥 Support the points mode and box mode, text mode will come soon.
|
| 19 |
|
| 20 |
-
|
| 21 |
|
| 22 |
🎯 Upload an Image, segment it with Fast Segment Anything (Everything mode). The other modes will come soon.
|
| 23 |
|
| 24 |
-
⌛️ It takes about
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
🚀 To get faster results, you can use a smaller input size and leave high_visual_quality unchecked.
|
| 27 |
|
|
@@ -41,17 +63,14 @@ default_example = examples[0]
|
|
| 41 |
css = "h1 { text-align: center } .about { text-align: justify; padding-left: 10%; padding-right: 10%; }"
|
| 42 |
|
| 43 |
|
| 44 |
-
def
|
| 45 |
input,
|
| 46 |
input_size=1024,
|
| 47 |
iou_threshold=0.7,
|
| 48 |
conf_threshold=0.25,
|
| 49 |
better_quality=False,
|
| 50 |
-
mask_random_color=True,
|
| 51 |
withContours=True,
|
| 52 |
-
|
| 53 |
-
bbox=None,
|
| 54 |
-
point_label=None,
|
| 55 |
use_retina=True,
|
| 56 |
):
|
| 57 |
input_size = int(input_size) # 确保 imgsz 是整数
|
|
@@ -69,19 +88,80 @@ def segment_image(
|
|
| 69 |
iou=iou_threshold,
|
| 70 |
conf=conf_threshold,
|
| 71 |
imgsz=input_size,)
|
|
|
|
| 72 |
fig = fast_process(annotations=results[0].masks.data,
|
| 73 |
image=input,
|
| 74 |
device=device,
|
| 75 |
scale=(1024 // input_size),
|
| 76 |
better_quality=better_quality,
|
| 77 |
mask_random_color=mask_random_color,
|
| 78 |
-
|
| 79 |
-
bbox=bbox,
|
| 80 |
-
point_label=point_label,
|
| 81 |
use_retina=use_retina,
|
| 82 |
withContours=withContours,)
|
| 83 |
return fig
|
| 84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
|
| 86 |
# input_size=1024
|
| 87 |
# high_quality_visual=True
|
|
@@ -93,75 +173,119 @@ def segment_image(
|
|
| 93 |
# pil_image = fast_process(annotations=results[0].masks.data,
|
| 94 |
# image=input, high_quality=high_quality_visual, device=device)
|
| 95 |
|
| 96 |
-
|
|
|
|
| 97 |
|
| 98 |
-
|
|
|
|
| 99 |
|
| 100 |
-
|
|
|
|
| 101 |
|
| 102 |
input_size_slider = gr.components.Slider(minimum=512,
|
| 103 |
maximum=1024,
|
| 104 |
value=1024,
|
| 105 |
step=64,
|
| 106 |
-
label='Input_size
|
|
|
|
| 107 |
|
| 108 |
with gr.Blocks(css=css, title='Fast Segment Anything') as demo:
|
| 109 |
with gr.Row():
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
# Images
|
| 119 |
-
with gr.Row(variant="panel"):
|
| 120 |
-
with gr.Column(scale=1):
|
| 121 |
-
cond_img.render()
|
| 122 |
-
|
| 123 |
-
with gr.Column(scale=1):
|
| 124 |
-
segm_img.render()
|
| 125 |
-
|
| 126 |
-
# Submit & Clear
|
| 127 |
-
with gr.Row():
|
| 128 |
-
with gr.Column():
|
| 129 |
-
input_size_slider.render()
|
| 130 |
-
|
| 131 |
-
with gr.Row():
|
| 132 |
-
contour_check = gr.Checkbox(value=True, label='withContours')
|
| 133 |
-
|
| 134 |
-
with gr.Column():
|
| 135 |
-
segment_btn = gr.Button("Segment Anything", variant='primary')
|
| 136 |
-
|
| 137 |
-
# with gr.Column():
|
| 138 |
-
# clear_btn = gr.Button("Clear", variant="primary")
|
| 139 |
-
|
| 140 |
-
gr.Markdown("Try some of the examples below ⬇️")
|
| 141 |
-
gr.Examples(examples=examples,
|
| 142 |
-
inputs=[cond_img],
|
| 143 |
-
outputs=segm_img,
|
| 144 |
-
fn=segment_image,
|
| 145 |
-
cache_examples=True,
|
| 146 |
-
examples_per_page=4)
|
| 147 |
-
|
| 148 |
-
with gr.Column():
|
| 149 |
-
with gr.Accordion("Advanced options", open=False):
|
| 150 |
-
iou_threshold = gr.Slider(0.1, 0.9, 0.7, step=0.1, label='iou_threshold')
|
| 151 |
-
conf_threshold = gr.Slider(0.1, 0.9, 0.25, step=0.05, label='conf_threshold')
|
| 152 |
-
mor_check = gr.Checkbox(value=False, label='better_visual_quality')
|
| 153 |
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
|
| 166 |
demo.queue()
|
| 167 |
demo.launch()
|
|
|
|
| 1 |
from ultralytics import YOLO
|
| 2 |
import gradio as gr
|
| 3 |
import torch
|
| 4 |
+
from tools import fast_process, format_results, box_prompt, point_prompt
|
| 5 |
+
from PIL import ImageDraw
|
| 6 |
+
import numpy as np
|
| 7 |
|
| 8 |
# Load the pre-trained model
|
| 9 |
model = YOLO('checkpoints/FastSAM.pt')
|
| 10 |
|
| 11 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 12 |
+
|
| 13 |
# Description
|
| 14 |
title = "<center><strong><font size='8'>🏃 Fast Segment Anything 🤗</font></strong></center>"
|
| 15 |
|
| 16 |
+
news = """ # 📖 News
|
| 17 |
|
| 18 |
+
🔥 2023/06/24: Add the 'Advanced options" in Everything mode to get a more detailed adjustment.
|
| 19 |
+
|
| 20 |
+
🔥 2023/06/26: Support the points mode. (Better and faster interaction will come soon!)
|
| 21 |
+
|
| 22 |
"""
|
| 23 |
|
| 24 |
|
|
|
|
| 25 |
|
| 26 |
+
description_e = """This is a demo on Github project 🏃 [Fast Segment Anything Model](https://github.com/CASIA-IVA-Lab/FastSAM).
|
| 27 |
|
| 28 |
🎯 Upload an Image, segment it with Fast Segment Anything (Everything mode). The other modes will come soon.
|
| 29 |
|
| 30 |
+
⌛️ It takes about 6~ seconds to generate segment results. The concurrency_count of queue is 1, please wait for a moment when it is crowded.
|
| 31 |
+
|
| 32 |
+
🚀 To get faster results, you can use a smaller input size and leave high_visual_quality unchecked.
|
| 33 |
+
|
| 34 |
+
📣 You can also obtain the segmentation results of any Image through this Colab: [](https://colab.research.google.com/drive/1oX14f6IneGGw612WgVlAiy91UHwFAvr9?usp=sharing)
|
| 35 |
+
|
| 36 |
+
😚 A huge thanks goes out to the @HuggingFace Team for supporting us with GPU grant.
|
| 37 |
+
|
| 38 |
+
🏠 Check out our [Model Card 🏃](https://huggingface.co/An-619/FastSAM)
|
| 39 |
+
|
| 40 |
+
"""
|
| 41 |
+
|
| 42 |
+
description_p = """This is a demo on Github project 🏃 [Fast Segment Anything Model](https://github.com/CASIA-IVA-Lab/FastSAM).
|
| 43 |
+
|
| 44 |
+
🎯 Upload an Image, add points and segment it with Fast Segment Anything (Points mode).
|
| 45 |
+
|
| 46 |
+
⌛️ It takes about 6~ seconds to generate segment results. The concurrency_count of queue is 1, please wait for a moment when it is crowded.
|
| 47 |
|
| 48 |
🚀 To get faster results, you can use a smaller input size and leave high_visual_quality unchecked.
|
| 49 |
|
|
|
|
| 63 |
css = "h1 { text-align: center } .about { text-align: justify; padding-left: 10%; padding-right: 10%; }"
|
| 64 |
|
| 65 |
|
| 66 |
+
def segment_everything(
|
| 67 |
input,
|
| 68 |
input_size=1024,
|
| 69 |
iou_threshold=0.7,
|
| 70 |
conf_threshold=0.25,
|
| 71 |
better_quality=False,
|
|
|
|
| 72 |
withContours=True,
|
| 73 |
+
mask_random_color=True,
|
|
|
|
|
|
|
| 74 |
use_retina=True,
|
| 75 |
):
|
| 76 |
input_size = int(input_size) # 确保 imgsz 是整数
|
|
|
|
| 88 |
iou=iou_threshold,
|
| 89 |
conf=conf_threshold,
|
| 90 |
imgsz=input_size,)
|
| 91 |
+
|
| 92 |
fig = fast_process(annotations=results[0].masks.data,
|
| 93 |
image=input,
|
| 94 |
device=device,
|
| 95 |
scale=(1024 // input_size),
|
| 96 |
better_quality=better_quality,
|
| 97 |
mask_random_color=mask_random_color,
|
| 98 |
+
bbox=None,
|
|
|
|
|
|
|
| 99 |
use_retina=use_retina,
|
| 100 |
withContours=withContours,)
|
| 101 |
return fig
|
| 102 |
|
| 103 |
+
def segment_with_points(
|
| 104 |
+
input,
|
| 105 |
+
input_size=1024,
|
| 106 |
+
iou_threshold=0.7,
|
| 107 |
+
conf_threshold=0.25,
|
| 108 |
+
better_quality=False,
|
| 109 |
+
withContours=True,
|
| 110 |
+
mask_random_color=True,
|
| 111 |
+
use_retina=True,
|
| 112 |
+
):
|
| 113 |
+
global global_points
|
| 114 |
+
global global_point_label
|
| 115 |
+
|
| 116 |
+
input_size = int(input_size) # 确保 imgsz 是整数
|
| 117 |
+
# Thanks for the suggestion by hysts in HuggingFace.
|
| 118 |
+
w, h = input.size
|
| 119 |
+
scale = input_size / max(w, h)
|
| 120 |
+
new_w = int(w * scale)
|
| 121 |
+
new_h = int(h * scale)
|
| 122 |
+
input = input.resize((new_w, new_h))
|
| 123 |
+
|
| 124 |
+
scaled_points = [[int(x * scale) for x in point] for point in global_points]
|
| 125 |
+
|
| 126 |
+
results = model(input,
|
| 127 |
+
device=device,
|
| 128 |
+
retina_masks=True,
|
| 129 |
+
iou=iou_threshold,
|
| 130 |
+
conf=conf_threshold,
|
| 131 |
+
imgsz=input_size,)
|
| 132 |
+
|
| 133 |
+
results = format_results(results[0], 0)
|
| 134 |
+
|
| 135 |
+
annotations, _ = point_prompt(results, scaled_points, global_point_label, new_h, new_w)
|
| 136 |
+
annotations = np.array([annotations])
|
| 137 |
+
|
| 138 |
+
fig = fast_process(annotations=annotations,
|
| 139 |
+
image=input,
|
| 140 |
+
device=device,
|
| 141 |
+
scale=(1024 // input_size),
|
| 142 |
+
better_quality=better_quality,
|
| 143 |
+
mask_random_color=mask_random_color,
|
| 144 |
+
bbox=None,
|
| 145 |
+
use_retina=use_retina,
|
| 146 |
+
withContours=withContours,)
|
| 147 |
+
global_points = []
|
| 148 |
+
global_point_label = []
|
| 149 |
+
return fig, None
|
| 150 |
+
|
| 151 |
+
def get_points_with_draw(image, label, evt: gr.SelectData):
|
| 152 |
+
x, y = evt.index[0], evt.index[1]
|
| 153 |
+
point_radius, point_color = 15, (255, 255, 0) if label == 'Add Mask' else (255, 0, 255)
|
| 154 |
+
global global_points
|
| 155 |
+
global global_point_label
|
| 156 |
+
print((x, y))
|
| 157 |
+
global_points.append([x, y])
|
| 158 |
+
global_point_label.append(1 if label == 'Add Mask' else 0)
|
| 159 |
+
|
| 160 |
+
# 创建一个可以在图像上绘图的对象
|
| 161 |
+
draw = ImageDraw.Draw(image)
|
| 162 |
+
draw.ellipse([(x - point_radius, y - point_radius), (x + point_radius, y + point_radius)], fill=point_color)
|
| 163 |
+
return image
|
| 164 |
+
|
| 165 |
|
| 166 |
# input_size=1024
|
| 167 |
# high_quality_visual=True
|
|
|
|
| 173 |
# pil_image = fast_process(annotations=results[0].masks.data,
|
| 174 |
# image=input, high_quality=high_quality_visual, device=device)
|
| 175 |
|
| 176 |
+
cond_img_e = gr.Image(label="Input", value=default_example[0], type='pil')
|
| 177 |
+
cond_img_p = gr.Image(label="Input with points", value=default_example[0], type='pil')
|
| 178 |
|
| 179 |
+
segm_img_e = gr.Image(label="Segmented Image", interactive=False, type='pil')
|
| 180 |
+
segm_img_p = gr.Image(label="Segmented Image with points", interactive=False, type='pil')
|
| 181 |
|
| 182 |
+
global_points = []
|
| 183 |
+
global_point_label = [] # TODO:Clear points each image
|
| 184 |
|
| 185 |
input_size_slider = gr.components.Slider(minimum=512,
|
| 186 |
maximum=1024,
|
| 187 |
value=1024,
|
| 188 |
step=64,
|
| 189 |
+
label='Input_size',
|
| 190 |
+
info='Our model was trained on a size of 1024')
|
| 191 |
|
| 192 |
with gr.Blocks(css=css, title='Fast Segment Anything') as demo:
|
| 193 |
with gr.Row():
|
| 194 |
+
with gr.Column(scale=1):
|
| 195 |
+
# Title
|
| 196 |
+
gr.Markdown(title)
|
| 197 |
+
|
| 198 |
+
with gr.Column(scale=1):
|
| 199 |
+
# News
|
| 200 |
+
gr.Markdown(news)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 201 |
|
| 202 |
+
with gr.Tab("Everything mode"):
|
| 203 |
+
# Images
|
| 204 |
+
with gr.Row(variant="panel"):
|
| 205 |
+
with gr.Column(scale=1):
|
| 206 |
+
cond_img_e.render()
|
| 207 |
+
|
| 208 |
+
with gr.Column(scale=1):
|
| 209 |
+
segm_img_e.render()
|
| 210 |
+
|
| 211 |
+
# Submit & Clear
|
| 212 |
+
with gr.Row():
|
| 213 |
+
with gr.Column():
|
| 214 |
+
input_size_slider.render()
|
| 215 |
+
|
| 216 |
+
with gr.Row():
|
| 217 |
+
contour_check = gr.Checkbox(value=True, label='withContours', info='draw the edges of the masks')
|
| 218 |
+
|
| 219 |
+
with gr.Column():
|
| 220 |
+
segment_btn_e = gr.Button("Segment Everything", variant='primary')
|
| 221 |
+
clear_btn_e = gr.Button("Clear", variant="secondary")
|
| 222 |
+
|
| 223 |
+
gr.Markdown("Try some of the examples below ⬇️")
|
| 224 |
+
gr.Examples(examples=examples,
|
| 225 |
+
inputs=[cond_img_e],
|
| 226 |
+
outputs=segm_img_e,
|
| 227 |
+
fn=segment_everything,
|
| 228 |
+
cache_examples=True,
|
| 229 |
+
examples_per_page=4)
|
| 230 |
+
|
| 231 |
+
with gr.Column():
|
| 232 |
+
with gr.Accordion("Advanced options", open=False):
|
| 233 |
+
iou_threshold = gr.Slider(0.1, 0.9, 0.7, step=0.1, label='iou', info='iou threshold for filtering the annotations')
|
| 234 |
+
conf_threshold = gr.Slider(0.1, 0.9, 0.25, step=0.05, label='conf', info='object confidence threshold')
|
| 235 |
+
with gr.Row():
|
| 236 |
+
mor_check = gr.Checkbox(value=False, label='better_visual_quality', info='better quality using morphologyEx')
|
| 237 |
+
with gr.Column():
|
| 238 |
+
retina_check = gr.Checkbox(value=True, label='use_retina', info='draw high-resolution segmentation masks')
|
| 239 |
+
|
| 240 |
+
# Description
|
| 241 |
+
gr.Markdown(description_e)
|
| 242 |
+
|
| 243 |
+
with gr.Tab("Points mode"):
|
| 244 |
+
# Images
|
| 245 |
+
with gr.Row(variant="panel"):
|
| 246 |
+
with gr.Column(scale=1):
|
| 247 |
+
cond_img_p.render()
|
| 248 |
+
|
| 249 |
+
with gr.Column(scale=1):
|
| 250 |
+
segm_img_p.render()
|
| 251 |
+
|
| 252 |
+
# Submit & Clear
|
| 253 |
+
with gr.Row():
|
| 254 |
+
with gr.Column():
|
| 255 |
+
with gr.Row():
|
| 256 |
+
add_or_remove = gr.Radio(["Add Mask", "Remove Area"], value="Add Mask", label="Point_label (foreground/background)")
|
| 257 |
+
|
| 258 |
+
with gr.Column():
|
| 259 |
+
segment_btn_p = gr.Button("Segment with points prompt", variant='primary')
|
| 260 |
+
clear_btn_p = gr.Button("Clear points", variant='secondary')
|
| 261 |
+
|
| 262 |
+
gr.Markdown("Try some of the examples below ⬇️")
|
| 263 |
+
gr.Examples(examples=examples,
|
| 264 |
+
inputs=[cond_img_p],
|
| 265 |
+
outputs=segm_img_p,
|
| 266 |
+
fn=segment_with_points,
|
| 267 |
+
# cache_examples=True,
|
| 268 |
+
examples_per_page=4)
|
| 269 |
+
|
| 270 |
+
with gr.Column():
|
| 271 |
+
# Description
|
| 272 |
+
gr.Markdown(description_p)
|
| 273 |
+
|
| 274 |
+
cond_img_p.select(get_points_with_draw, [cond_img_p, add_or_remove], cond_img_p)
|
| 275 |
+
|
| 276 |
+
segment_btn_e.click(segment_everything,
|
| 277 |
+
inputs=[cond_img_e, input_size_slider, iou_threshold, conf_threshold, mor_check, contour_check, retina_check],
|
| 278 |
+
outputs=segm_img_e)
|
| 279 |
+
|
| 280 |
+
segment_btn_p.click(segment_with_points,
|
| 281 |
+
inputs=[cond_img_p],
|
| 282 |
+
outputs=[segm_img_p, cond_img_p])
|
| 283 |
+
|
| 284 |
+
def clear():
|
| 285 |
+
return None, None
|
| 286 |
+
|
| 287 |
+
clear_btn_e.click(clear, outputs=[cond_img_e, segm_img_e])
|
| 288 |
+
clear_btn_p.click(clear, outputs=[cond_img_p, segm_img_p])
|
| 289 |
|
| 290 |
demo.queue()
|
| 291 |
demo.launch()
|
tools.py
CHANGED
|
@@ -93,9 +93,7 @@ def fast_process(
|
|
| 93 |
scale,
|
| 94 |
better_quality=False,
|
| 95 |
mask_random_color=True,
|
| 96 |
-
points=None,
|
| 97 |
bbox=None,
|
| 98 |
-
point_label=None,
|
| 99 |
use_retina=True,
|
| 100 |
withContours=True,
|
| 101 |
):
|
|
@@ -117,8 +115,6 @@ def fast_process(
|
|
| 117 |
plt.gca(),
|
| 118 |
random_color=mask_random_color,
|
| 119 |
bbox=bbox,
|
| 120 |
-
points=points,
|
| 121 |
-
pointlabel=point_label,
|
| 122 |
retinamask=use_retina,
|
| 123 |
target_height=original_h,
|
| 124 |
target_width=original_w,
|
|
@@ -131,8 +127,6 @@ def fast_process(
|
|
| 131 |
plt.gca(),
|
| 132 |
random_color=mask_random_color,
|
| 133 |
bbox=bbox,
|
| 134 |
-
points=points,
|
| 135 |
-
pointlabel=point_label,
|
| 136 |
retinamask=use_retina,
|
| 137 |
target_height=original_h,
|
| 138 |
target_width=original_w,
|
|
@@ -159,7 +153,7 @@ def fast_process(
|
|
| 159 |
cv2.drawContours(temp, contour_all, -1, (255, 255, 255), 2 // scale)
|
| 160 |
color = np.array([0 / 255, 0 / 255, 255 / 255, 0.9])
|
| 161 |
contour_mask = temp / 255 * color.reshape(1, 1, -1)
|
| 162 |
-
|
| 163 |
image = image.convert('RGBA')
|
| 164 |
overlay_inner = Image.fromarray((inner_mask * 255).astype(np.uint8), 'RGBA')
|
| 165 |
image.paste(overlay_inner, (0, 0), overlay_inner)
|
|
@@ -177,8 +171,6 @@ def fast_show_mask(
|
|
| 177 |
ax,
|
| 178 |
random_color=False,
|
| 179 |
bbox=None,
|
| 180 |
-
points=None,
|
| 181 |
-
pointlabel=None,
|
| 182 |
retinamask=True,
|
| 183 |
target_height=960,
|
| 184 |
target_width=960,
|
|
@@ -209,16 +201,6 @@ def fast_show_mask(
|
|
| 209 |
if bbox is not None:
|
| 210 |
x1, y1, x2, y2 = bbox
|
| 211 |
ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor='b', linewidth=1))
|
| 212 |
-
# draw point
|
| 213 |
-
if points is not None:
|
| 214 |
-
plt.scatter([point[0] for i, point in enumerate(points) if pointlabel[i] == 1],
|
| 215 |
-
[point[1] for i, point in enumerate(points) if pointlabel[i] == 1],
|
| 216 |
-
s=20,
|
| 217 |
-
c='y')
|
| 218 |
-
plt.scatter([point[0] for i, point in enumerate(points) if pointlabel[i] == 0],
|
| 219 |
-
[point[1] for i, point in enumerate(points) if pointlabel[i] == 0],
|
| 220 |
-
s=20,
|
| 221 |
-
c='m')
|
| 222 |
|
| 223 |
if retinamask == False:
|
| 224 |
mask = cv2.resize(mask, (target_width, target_height), interpolation=cv2.INTER_NEAREST)
|
|
@@ -231,8 +213,6 @@ def fast_show_mask_gpu(
|
|
| 231 |
ax,
|
| 232 |
random_color=False,
|
| 233 |
bbox=None,
|
| 234 |
-
points=None,
|
| 235 |
-
pointlabel=None,
|
| 236 |
retinamask=True,
|
| 237 |
target_height=960,
|
| 238 |
target_width=960,
|
|
@@ -269,20 +249,6 @@ def fast_show_mask_gpu(
|
|
| 269 |
(x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor="b", linewidth=1
|
| 270 |
)
|
| 271 |
)
|
| 272 |
-
# draw point
|
| 273 |
-
if points is not None:
|
| 274 |
-
plt.scatter(
|
| 275 |
-
[point[0] for i, point in enumerate(points) if pointlabel[i] == 1],
|
| 276 |
-
[point[1] for i, point in enumerate(points) if pointlabel[i] == 1],
|
| 277 |
-
s=20,
|
| 278 |
-
c="y",
|
| 279 |
-
)
|
| 280 |
-
plt.scatter(
|
| 281 |
-
[point[0] for i, point in enumerate(points) if pointlabel[i] == 0],
|
| 282 |
-
[point[1] for i, point in enumerate(points) if pointlabel[i] == 0],
|
| 283 |
-
s=20,
|
| 284 |
-
c="m",
|
| 285 |
-
)
|
| 286 |
if retinamask == False:
|
| 287 |
mask_cpu = cv2.resize(
|
| 288 |
mask_cpu, (target_width, target_height), interpolation=cv2.INTER_NEAREST
|
|
|
|
| 93 |
scale,
|
| 94 |
better_quality=False,
|
| 95 |
mask_random_color=True,
|
|
|
|
| 96 |
bbox=None,
|
|
|
|
| 97 |
use_retina=True,
|
| 98 |
withContours=True,
|
| 99 |
):
|
|
|
|
| 115 |
plt.gca(),
|
| 116 |
random_color=mask_random_color,
|
| 117 |
bbox=bbox,
|
|
|
|
|
|
|
| 118 |
retinamask=use_retina,
|
| 119 |
target_height=original_h,
|
| 120 |
target_width=original_w,
|
|
|
|
| 127 |
plt.gca(),
|
| 128 |
random_color=mask_random_color,
|
| 129 |
bbox=bbox,
|
|
|
|
|
|
|
| 130 |
retinamask=use_retina,
|
| 131 |
target_height=original_h,
|
| 132 |
target_width=original_w,
|
|
|
|
| 153 |
cv2.drawContours(temp, contour_all, -1, (255, 255, 255), 2 // scale)
|
| 154 |
color = np.array([0 / 255, 0 / 255, 255 / 255, 0.9])
|
| 155 |
contour_mask = temp / 255 * color.reshape(1, 1, -1)
|
| 156 |
+
|
| 157 |
image = image.convert('RGBA')
|
| 158 |
overlay_inner = Image.fromarray((inner_mask * 255).astype(np.uint8), 'RGBA')
|
| 159 |
image.paste(overlay_inner, (0, 0), overlay_inner)
|
|
|
|
| 171 |
ax,
|
| 172 |
random_color=False,
|
| 173 |
bbox=None,
|
|
|
|
|
|
|
| 174 |
retinamask=True,
|
| 175 |
target_height=960,
|
| 176 |
target_width=960,
|
|
|
|
| 201 |
if bbox is not None:
|
| 202 |
x1, y1, x2, y2 = bbox
|
| 203 |
ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor='b', linewidth=1))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
|
| 205 |
if retinamask == False:
|
| 206 |
mask = cv2.resize(mask, (target_width, target_height), interpolation=cv2.INTER_NEAREST)
|
|
|
|
| 213 |
ax,
|
| 214 |
random_color=False,
|
| 215 |
bbox=None,
|
|
|
|
|
|
|
| 216 |
retinamask=True,
|
| 217 |
target_height=960,
|
| 218 |
target_width=960,
|
|
|
|
| 249 |
(x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor="b", linewidth=1
|
| 250 |
)
|
| 251 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 252 |
if retinamask == False:
|
| 253 |
mask_cpu = cv2.resize(
|
| 254 |
mask_cpu, (target_width, target_height), interpolation=cv2.INTER_NEAREST
|