Spaces:
Runtime error
Runtime error
AAAAAAAyq
commited on
Commit
·
9951234
1
Parent(s):
766f95f
Add text mode
Browse files- .gitignore +7 -0
- README.md +1 -1
- __pycache__/tools.cpython-39.pyc +0 -0
- app.py → app_gradio.py +143 -61
- checkpoints/FastSAM.pt → examples/dogs.jpg +2 -2
- {assets → examples}/sa_10039.jpg +0 -0
- {assets → examples}/sa_11025.jpg +0 -0
- {assets → examples}/sa_1309.jpg +0 -0
- {assets → examples}/sa_192.jpg +0 -0
- {assets → examples}/sa_414.jpg +0 -0
- {assets → examples}/sa_561.jpg +0 -0
- {assets → examples}/sa_862.jpg +0 -0
- {assets → examples}/sa_8776.jpg +0 -0
- requirements.txt +1 -0
- utils/__init__.py +0 -0
- tools.py → utils/tools.py +174 -107
- utils/tools_gradio.py +175 -0
.gitignore
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.pyc
|
| 2 |
+
*.pyo
|
| 3 |
+
*.pyd
|
| 4 |
+
.DS_Store
|
| 5 |
+
.idea
|
| 6 |
+
weights
|
| 7 |
+
gradio_cached_examples
|
README.md
CHANGED
|
@@ -5,7 +5,7 @@ colorFrom: pink
|
|
| 5 |
colorTo: indigo
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 3.35.2
|
| 8 |
-
app_file:
|
| 9 |
pinned: false
|
| 10 |
license: apache-2.0
|
| 11 |
---
|
|
|
|
| 5 |
colorTo: indigo
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 3.35.2
|
| 8 |
+
app_file: app_gradio.py
|
| 9 |
pinned: false
|
| 10 |
license: apache-2.0
|
| 11 |
---
|
__pycache__/tools.cpython-39.pyc
DELETED
|
Binary file (8.4 kB)
|
|
|
app.py → app_gradio.py
RENAMED
|
@@ -1,24 +1,31 @@
|
|
| 1 |
from ultralytics import YOLO
|
| 2 |
import gradio as gr
|
| 3 |
import torch
|
| 4 |
-
from
|
|
|
|
| 5 |
from PIL import ImageDraw
|
| 6 |
import numpy as np
|
| 7 |
|
| 8 |
# Load the pre-trained model
|
| 9 |
-
model = YOLO('
|
| 10 |
|
| 11 |
-
device =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
# Description
|
| 14 |
title = "<center><strong><font size='8'>🏃 Fast Segment Anything 🤗</font></strong></center>"
|
| 15 |
|
| 16 |
news = """ # 📖 News
|
|
|
|
| 17 |
|
| 18 |
-
🔥 2023/06/24: Add the 'Advanced options" in Everything mode to get a more detailed adjustment.
|
| 19 |
-
|
| 20 |
🔥 2023/06/26: Support the points mode. (Better and faster interaction will come soon!)
|
| 21 |
-
|
|
|
|
| 22 |
"""
|
| 23 |
|
| 24 |
description_e = """This is a demo on Github project 🏃 [Fast Segment Anything Model](https://github.com/CASIA-IVA-Lab/FastSAM). Welcome to give a star ⭐️ to it.
|
|
@@ -52,8 +59,8 @@ description_p = """ # 🎯 Instructions for points mode
|
|
| 52 |
|
| 53 |
"""
|
| 54 |
|
| 55 |
-
examples = [["
|
| 56 |
-
["
|
| 57 |
|
| 58 |
default_example = examples[0]
|
| 59 |
|
|
@@ -68,10 +75,10 @@ def segment_everything(
|
|
| 68 |
better_quality=False,
|
| 69 |
withContours=True,
|
| 70 |
use_retina=True,
|
|
|
|
| 71 |
mask_random_color=True,
|
| 72 |
-
|
| 73 |
input_size = int(input_size) # 确保 imgsz 是整数
|
| 74 |
-
|
| 75 |
# Thanks for the suggestion by hysts in HuggingFace.
|
| 76 |
w, h = input.size
|
| 77 |
scale = input_size / max(w, h)
|
|
@@ -85,18 +92,26 @@ def segment_everything(
|
|
| 85 |
iou=iou_threshold,
|
| 86 |
conf=conf_threshold,
|
| 87 |
imgsz=input_size,)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
|
| 89 |
-
fig = fast_process(annotations=
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
return fig
|
| 99 |
|
|
|
|
| 100 |
def segment_with_points(
|
| 101 |
input,
|
| 102 |
input_size=1024,
|
|
@@ -104,9 +119,9 @@ def segment_with_points(
|
|
| 104 |
conf_threshold=0.25,
|
| 105 |
better_quality=False,
|
| 106 |
withContours=True,
|
| 107 |
-
mask_random_color=True,
|
| 108 |
use_retina=True,
|
| 109 |
-
|
|
|
|
| 110 |
global global_points
|
| 111 |
global global_point_label
|
| 112 |
|
|
@@ -128,56 +143,51 @@ def segment_with_points(
|
|
| 128 |
imgsz=input_size,)
|
| 129 |
|
| 130 |
results = format_results(results[0], 0)
|
| 131 |
-
|
| 132 |
annotations, _ = point_prompt(results, scaled_points, global_point_label, new_h, new_w)
|
| 133 |
annotations = np.array([annotations])
|
| 134 |
-
|
| 135 |
fig = fast_process(annotations=annotations,
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
|
|
|
| 144 |
global_points = []
|
| 145 |
global_point_label = []
|
| 146 |
return fig, None
|
| 147 |
|
|
|
|
| 148 |
def get_points_with_draw(image, label, evt: gr.SelectData):
|
| 149 |
-
x, y = evt.index[0], evt.index[1]
|
| 150 |
-
point_radius, point_color = 15, (255, 255, 0) if label == 'Add Mask' else (255, 0, 255)
|
| 151 |
global global_points
|
| 152 |
global global_point_label
|
| 153 |
-
|
|
|
|
|
|
|
| 154 |
global_points.append([x, y])
|
| 155 |
global_point_label.append(1 if label == 'Add Mask' else 0)
|
| 156 |
|
|
|
|
|
|
|
| 157 |
# 创建一个可以在图像上绘图的对象
|
| 158 |
draw = ImageDraw.Draw(image)
|
| 159 |
draw.ellipse([(x - point_radius, y - point_radius), (x + point_radius, y + point_radius)], fill=point_color)
|
| 160 |
return image
|
| 161 |
-
|
| 162 |
|
| 163 |
-
# input_size=1024
|
| 164 |
-
# high_quality_visual=True
|
| 165 |
-
# inp = 'assets/sa_192.jpg'
|
| 166 |
-
# input = Image.open(inp)
|
| 167 |
-
# device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 168 |
-
# input_size = int(input_size) # 确保 imgsz 是整数
|
| 169 |
-
# results = model(input, device=device, retina_masks=True, iou=0.7, conf=0.25, imgsz=input_size)
|
| 170 |
-
# pil_image = fast_process(annotations=results[0].masks.data,
|
| 171 |
-
# image=input, high_quality=high_quality_visual, device=device)
|
| 172 |
|
| 173 |
cond_img_e = gr.Image(label="Input", value=default_example[0], type='pil')
|
| 174 |
cond_img_p = gr.Image(label="Input with points", value=default_example[0], type='pil')
|
|
|
|
| 175 |
|
| 176 |
segm_img_e = gr.Image(label="Segmented Image", interactive=False, type='pil')
|
| 177 |
segm_img_p = gr.Image(label="Segmented Image with points", interactive=False, type='pil')
|
|
|
|
| 178 |
|
| 179 |
global_points = []
|
| 180 |
-
global_point_label = []
|
| 181 |
|
| 182 |
input_size_slider = gr.components.Slider(minimum=512,
|
| 183 |
maximum=1024,
|
|
@@ -188,14 +198,14 @@ input_size_slider = gr.components.Slider(minimum=512,
|
|
| 188 |
|
| 189 |
with gr.Blocks(css=css, title='Fast Segment Anything') as demo:
|
| 190 |
with gr.Row():
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
with gr.Tab("Everything mode"):
|
| 200 |
# Images
|
| 201 |
with gr.Row(variant="panel"):
|
|
@@ -227,13 +237,13 @@ with gr.Blocks(css=css, title='Fast Segment Anything') as demo:
|
|
| 227 |
|
| 228 |
with gr.Column():
|
| 229 |
with gr.Accordion("Advanced options", open=False):
|
|
|
|
| 230 |
iou_threshold = gr.Slider(0.1, 0.9, 0.7, step=0.1, label='iou', info='iou threshold for filtering the annotations')
|
| 231 |
conf_threshold = gr.Slider(0.1, 0.9, 0.25, step=0.05, label='conf', info='object confidence threshold')
|
| 232 |
with gr.Row():
|
| 233 |
mor_check = gr.Checkbox(value=False, label='better_visual_quality', info='better quality using morphologyEx')
|
| 234 |
with gr.Column():
|
| 235 |
retina_check = gr.Checkbox(value=True, label='use_retina', info='draw high-resolution segmentation masks')
|
| 236 |
-
|
| 237 |
# Description
|
| 238 |
gr.Markdown(description_e)
|
| 239 |
|
|
@@ -259,30 +269,102 @@ with gr.Blocks(css=css, title='Fast Segment Anything') as demo:
|
|
| 259 |
gr.Markdown("Try some of the examples below ⬇️")
|
| 260 |
gr.Examples(examples=examples,
|
| 261 |
inputs=[cond_img_p],
|
| 262 |
-
outputs=segm_img_p,
|
| 263 |
-
fn=segment_with_points,
|
| 264 |
# cache_examples=True,
|
| 265 |
examples_per_page=4)
|
| 266 |
|
| 267 |
with gr.Column():
|
| 268 |
# Description
|
| 269 |
gr.Markdown(description_p)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 270 |
|
| 271 |
cond_img_p.select(get_points_with_draw, [cond_img_p, add_or_remove], cond_img_p)
|
| 272 |
|
| 273 |
segment_btn_e.click(segment_everything,
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 277 |
segment_btn_p.click(segment_with_points,
|
| 278 |
-
|
| 279 |
-
|
| 280 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 281 |
def clear():
|
| 282 |
return None, None
|
| 283 |
|
|
|
|
|
|
|
|
|
|
| 284 |
clear_btn_e.click(clear, outputs=[cond_img_e, segm_img_e])
|
| 285 |
clear_btn_p.click(clear, outputs=[cond_img_p, segm_img_p])
|
|
|
|
| 286 |
|
| 287 |
demo.queue()
|
| 288 |
demo.launch()
|
|
|
|
| 1 |
from ultralytics import YOLO
|
| 2 |
import gradio as gr
|
| 3 |
import torch
|
| 4 |
+
from utils.tools_gradio import fast_process
|
| 5 |
+
from utils.tools import format_results, box_prompt, point_prompt, text_prompt
|
| 6 |
from PIL import ImageDraw
|
| 7 |
import numpy as np
|
| 8 |
|
| 9 |
# Load the pre-trained model
|
| 10 |
+
model = YOLO('./weights/FastSAM.pt')
|
| 11 |
|
| 12 |
+
device = torch.device(
|
| 13 |
+
"cuda"
|
| 14 |
+
if torch.cuda.is_available()
|
| 15 |
+
else "mps"
|
| 16 |
+
if torch.backends.mps.is_available()
|
| 17 |
+
else "cpu"
|
| 18 |
+
)
|
| 19 |
|
| 20 |
# Description
|
| 21 |
title = "<center><strong><font size='8'>🏃 Fast Segment Anything 🤗</font></strong></center>"
|
| 22 |
|
| 23 |
news = """ # 📖 News
|
| 24 |
+
🔥 2023/06/29: Support the text mode (Thanks for [gaoxinge](https://github.com/CASIA-IVA-Lab/FastSAM/pull/47)).
|
| 25 |
|
|
|
|
|
|
|
| 26 |
🔥 2023/06/26: Support the points mode. (Better and faster interaction will come soon!)
|
| 27 |
+
|
| 28 |
+
🔥 2023/06/24: Add the 'Advanced options" in Everything mode to get a more detailed adjustment.
|
| 29 |
"""
|
| 30 |
|
| 31 |
description_e = """This is a demo on Github project 🏃 [Fast Segment Anything Model](https://github.com/CASIA-IVA-Lab/FastSAM). Welcome to give a star ⭐️ to it.
|
|
|
|
| 59 |
|
| 60 |
"""
|
| 61 |
|
| 62 |
+
examples = [["examples/sa_8776.jpg"], ["examples/sa_414.jpg"], ["examples/sa_1309.jpg"], ["examples/sa_11025.jpg"],
|
| 63 |
+
["examples/sa_561.jpg"], ["examples/sa_192.jpg"], ["examples/sa_10039.jpg"], ["examples/sa_862.jpg"]]
|
| 64 |
|
| 65 |
default_example = examples[0]
|
| 66 |
|
|
|
|
| 75 |
better_quality=False,
|
| 76 |
withContours=True,
|
| 77 |
use_retina=True,
|
| 78 |
+
text="",
|
| 79 |
mask_random_color=True,
|
| 80 |
+
):
|
| 81 |
input_size = int(input_size) # 确保 imgsz 是整数
|
|
|
|
| 82 |
# Thanks for the suggestion by hysts in HuggingFace.
|
| 83 |
w, h = input.size
|
| 84 |
scale = input_size / max(w, h)
|
|
|
|
| 92 |
iou=iou_threshold,
|
| 93 |
conf=conf_threshold,
|
| 94 |
imgsz=input_size,)
|
| 95 |
+
|
| 96 |
+
if len(text) > 0:
|
| 97 |
+
results = format_results(results[0], 0)
|
| 98 |
+
annotations, _ = text_prompt(results, text, input, device=device)
|
| 99 |
+
annotations = np.array([annotations])
|
| 100 |
+
else:
|
| 101 |
+
annotations = results[0].masks.data
|
| 102 |
|
| 103 |
+
fig = fast_process(annotations=annotations,
|
| 104 |
+
image=input,
|
| 105 |
+
device=device,
|
| 106 |
+
scale=(1024 // input_size),
|
| 107 |
+
better_quality=better_quality,
|
| 108 |
+
mask_random_color=mask_random_color,
|
| 109 |
+
bbox=None,
|
| 110 |
+
use_retina=use_retina,
|
| 111 |
+
withContours=withContours,)
|
| 112 |
return fig
|
| 113 |
|
| 114 |
+
|
| 115 |
def segment_with_points(
|
| 116 |
input,
|
| 117 |
input_size=1024,
|
|
|
|
| 119 |
conf_threshold=0.25,
|
| 120 |
better_quality=False,
|
| 121 |
withContours=True,
|
|
|
|
| 122 |
use_retina=True,
|
| 123 |
+
mask_random_color=True,
|
| 124 |
+
):
|
| 125 |
global global_points
|
| 126 |
global global_point_label
|
| 127 |
|
|
|
|
| 143 |
imgsz=input_size,)
|
| 144 |
|
| 145 |
results = format_results(results[0], 0)
|
|
|
|
| 146 |
annotations, _ = point_prompt(results, scaled_points, global_point_label, new_h, new_w)
|
| 147 |
annotations = np.array([annotations])
|
| 148 |
+
|
| 149 |
fig = fast_process(annotations=annotations,
|
| 150 |
+
image=input,
|
| 151 |
+
device=device,
|
| 152 |
+
scale=(1024 // input_size),
|
| 153 |
+
better_quality=better_quality,
|
| 154 |
+
mask_random_color=mask_random_color,
|
| 155 |
+
bbox=None,
|
| 156 |
+
use_retina=use_retina,
|
| 157 |
+
withContours=withContours,)
|
| 158 |
+
|
| 159 |
global_points = []
|
| 160 |
global_point_label = []
|
| 161 |
return fig, None
|
| 162 |
|
| 163 |
+
|
| 164 |
def get_points_with_draw(image, label, evt: gr.SelectData):
|
|
|
|
|
|
|
| 165 |
global global_points
|
| 166 |
global global_point_label
|
| 167 |
+
|
| 168 |
+
x, y = evt.index[0], evt.index[1]
|
| 169 |
+
point_radius, point_color = 15, (255, 255, 0) if label == 'Add Mask' else (255, 0, 255)
|
| 170 |
global_points.append([x, y])
|
| 171 |
global_point_label.append(1 if label == 'Add Mask' else 0)
|
| 172 |
|
| 173 |
+
print(x, y, label == 'Add Mask')
|
| 174 |
+
|
| 175 |
# 创建一个可以在图像上绘图的对象
|
| 176 |
draw = ImageDraw.Draw(image)
|
| 177 |
draw.ellipse([(x - point_radius, y - point_radius), (x + point_radius, y + point_radius)], fill=point_color)
|
| 178 |
return image
|
|
|
|
| 179 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
|
| 181 |
cond_img_e = gr.Image(label="Input", value=default_example[0], type='pil')
|
| 182 |
cond_img_p = gr.Image(label="Input with points", value=default_example[0], type='pil')
|
| 183 |
+
cond_img_t = gr.Image(label="Input with text", value="examples/dogs.jpg", type='pil')
|
| 184 |
|
| 185 |
segm_img_e = gr.Image(label="Segmented Image", interactive=False, type='pil')
|
| 186 |
segm_img_p = gr.Image(label="Segmented Image with points", interactive=False, type='pil')
|
| 187 |
+
segm_img_t = gr.Image(label="Segmented Image with text", interactive=False, type='pil')
|
| 188 |
|
| 189 |
global_points = []
|
| 190 |
+
global_point_label = []
|
| 191 |
|
| 192 |
input_size_slider = gr.components.Slider(minimum=512,
|
| 193 |
maximum=1024,
|
|
|
|
| 198 |
|
| 199 |
with gr.Blocks(css=css, title='Fast Segment Anything') as demo:
|
| 200 |
with gr.Row():
|
| 201 |
+
with gr.Column(scale=1):
|
| 202 |
+
# Title
|
| 203 |
+
gr.Markdown(title)
|
| 204 |
+
|
| 205 |
+
with gr.Column(scale=1):
|
| 206 |
+
# News
|
| 207 |
+
gr.Markdown(news)
|
| 208 |
+
|
| 209 |
with gr.Tab("Everything mode"):
|
| 210 |
# Images
|
| 211 |
with gr.Row(variant="panel"):
|
|
|
|
| 237 |
|
| 238 |
with gr.Column():
|
| 239 |
with gr.Accordion("Advanced options", open=False):
|
| 240 |
+
# text_box = gr.Textbox(label="text prompt")
|
| 241 |
iou_threshold = gr.Slider(0.1, 0.9, 0.7, step=0.1, label='iou', info='iou threshold for filtering the annotations')
|
| 242 |
conf_threshold = gr.Slider(0.1, 0.9, 0.25, step=0.05, label='conf', info='object confidence threshold')
|
| 243 |
with gr.Row():
|
| 244 |
mor_check = gr.Checkbox(value=False, label='better_visual_quality', info='better quality using morphologyEx')
|
| 245 |
with gr.Column():
|
| 246 |
retina_check = gr.Checkbox(value=True, label='use_retina', info='draw high-resolution segmentation masks')
|
|
|
|
| 247 |
# Description
|
| 248 |
gr.Markdown(description_e)
|
| 249 |
|
|
|
|
| 269 |
gr.Markdown("Try some of the examples below ⬇️")
|
| 270 |
gr.Examples(examples=examples,
|
| 271 |
inputs=[cond_img_p],
|
| 272 |
+
# outputs=segm_img_p,
|
| 273 |
+
# fn=segment_with_points,
|
| 274 |
# cache_examples=True,
|
| 275 |
examples_per_page=4)
|
| 276 |
|
| 277 |
with gr.Column():
|
| 278 |
# Description
|
| 279 |
gr.Markdown(description_p)
|
| 280 |
+
|
| 281 |
+
with gr.Tab("Text mode"):
|
| 282 |
+
# Images
|
| 283 |
+
with gr.Row(variant="panel"):
|
| 284 |
+
with gr.Column(scale=1):
|
| 285 |
+
cond_img_t.render()
|
| 286 |
+
|
| 287 |
+
with gr.Column(scale=1):
|
| 288 |
+
segm_img_t.render()
|
| 289 |
+
|
| 290 |
+
# Submit & Clear
|
| 291 |
+
with gr.Row():
|
| 292 |
+
with gr.Column():
|
| 293 |
+
input_size_slider_t = gr.components.Slider(minimum=512,
|
| 294 |
+
maximum=1024,
|
| 295 |
+
value=1024,
|
| 296 |
+
step=64,
|
| 297 |
+
label='Input_size',
|
| 298 |
+
info='Our model was trained on a size of 1024')
|
| 299 |
+
with gr.Row():
|
| 300 |
+
with gr.Column():
|
| 301 |
+
contour_check = gr.Checkbox(value=True, label='withContours', info='draw the edges of the masks')
|
| 302 |
+
text_box = gr.Textbox(label="text prompt", value="a black dog")
|
| 303 |
+
|
| 304 |
+
with gr.Column():
|
| 305 |
+
segment_btn_t = gr.Button("Segment with text", variant='primary')
|
| 306 |
+
clear_btn_t = gr.Button("Clear", variant="secondary")
|
| 307 |
+
|
| 308 |
+
gr.Markdown("Try some of the examples below ⬇️")
|
| 309 |
+
gr.Examples(examples=["examples/dogs.jpg"],
|
| 310 |
+
inputs=[cond_img_e],
|
| 311 |
+
# outputs=segm_img_e,
|
| 312 |
+
# fn=segment_everything,
|
| 313 |
+
# cache_examples=True,
|
| 314 |
+
examples_per_page=4)
|
| 315 |
+
|
| 316 |
+
with gr.Column():
|
| 317 |
+
with gr.Accordion("Advanced options", open=False):
|
| 318 |
+
iou_threshold = gr.Slider(0.1, 0.9, 0.7, step=0.1, label='iou', info='iou threshold for filtering the annotations')
|
| 319 |
+
conf_threshold = gr.Slider(0.1, 0.9, 0.25, step=0.05, label='conf', info='object confidence threshold')
|
| 320 |
+
with gr.Row():
|
| 321 |
+
mor_check = gr.Checkbox(value=False, label='better_visual_quality', info='better quality using morphologyEx')
|
| 322 |
+
with gr.Column():
|
| 323 |
+
retina_check = gr.Checkbox(value=True, label='use_retina', info='draw high-resolution segmentation masks')
|
| 324 |
+
|
| 325 |
+
# Description
|
| 326 |
+
gr.Markdown(description_e)
|
| 327 |
|
| 328 |
cond_img_p.select(get_points_with_draw, [cond_img_p, add_or_remove], cond_img_p)
|
| 329 |
|
| 330 |
segment_btn_e.click(segment_everything,
|
| 331 |
+
inputs=[
|
| 332 |
+
cond_img_e,
|
| 333 |
+
input_size_slider,
|
| 334 |
+
iou_threshold,
|
| 335 |
+
conf_threshold,
|
| 336 |
+
mor_check,
|
| 337 |
+
contour_check,
|
| 338 |
+
retina_check,
|
| 339 |
+
],
|
| 340 |
+
outputs=segm_img_e)
|
| 341 |
+
|
| 342 |
segment_btn_p.click(segment_with_points,
|
| 343 |
+
inputs=[cond_img_p],
|
| 344 |
+
outputs=[segm_img_p, cond_img_p])
|
| 345 |
|
| 346 |
+
segment_btn_t.click(segment_everything,
|
| 347 |
+
inputs=[
|
| 348 |
+
cond_img_t,
|
| 349 |
+
input_size_slider_t,
|
| 350 |
+
iou_threshold,
|
| 351 |
+
conf_threshold,
|
| 352 |
+
mor_check,
|
| 353 |
+
contour_check,
|
| 354 |
+
retina_check,
|
| 355 |
+
text_box,
|
| 356 |
+
],
|
| 357 |
+
outputs=segm_img_t)
|
| 358 |
+
|
| 359 |
def clear():
|
| 360 |
return None, None
|
| 361 |
|
| 362 |
+
def clear_text():
|
| 363 |
+
return None, None, None
|
| 364 |
+
|
| 365 |
clear_btn_e.click(clear, outputs=[cond_img_e, segm_img_e])
|
| 366 |
clear_btn_p.click(clear, outputs=[cond_img_p, segm_img_p])
|
| 367 |
+
clear_btn_t.click(clear_text, outputs=[cond_img_p, segm_img_p, text_box])
|
| 368 |
|
| 369 |
demo.queue()
|
| 370 |
demo.launch()
|
checkpoints/FastSAM.pt → examples/dogs.jpg
RENAMED
|
File without changes
|
{assets → examples}/sa_10039.jpg
RENAMED
|
File without changes
|
{assets → examples}/sa_11025.jpg
RENAMED
|
File without changes
|
{assets → examples}/sa_1309.jpg
RENAMED
|
File without changes
|
{assets → examples}/sa_192.jpg
RENAMED
|
File without changes
|
{assets → examples}/sa_414.jpg
RENAMED
|
File without changes
|
{assets → examples}/sa_561.jpg
RENAMED
|
File without changes
|
{assets → examples}/sa_862.jpg
RENAMED
|
File without changes
|
{assets → examples}/sa_8776.jpg
RENAMED
|
File without changes
|
requirements.txt
CHANGED
|
@@ -2,6 +2,7 @@
|
|
| 2 |
matplotlib==3.2.2
|
| 3 |
numpy
|
| 4 |
opencv-python
|
|
|
|
| 5 |
# Pillow>=7.1.2
|
| 6 |
# PyYAML>=5.3.1
|
| 7 |
# requests>=2.23.0
|
|
|
|
| 2 |
matplotlib==3.2.2
|
| 3 |
numpy
|
| 4 |
opencv-python
|
| 5 |
+
clip>=0.2.0
|
| 6 |
# Pillow>=7.1.2
|
| 7 |
# PyYAML>=5.3.1
|
| 8 |
# requests>=2.23.0
|
utils/__init__.py
ADDED
|
File without changes
|
tools.py → utils/tools.py
RENAMED
|
@@ -3,7 +3,9 @@ from PIL import Image
|
|
| 3 |
import matplotlib.pyplot as plt
|
| 4 |
import cv2
|
| 5 |
import torch
|
| 6 |
-
|
|
|
|
|
|
|
| 7 |
|
| 8 |
|
| 9 |
def convert_box_xywh_to_xyxy(box):
|
|
@@ -49,7 +51,7 @@ def format_results(result, filter=0):
|
|
| 49 |
return annotations
|
| 50 |
|
| 51 |
|
| 52 |
-
def filter_masks(annotations): #
|
| 53 |
annotations.sort(key=lambda x: x["area"], reverse=True)
|
| 54 |
to_remove = set()
|
| 55 |
for i in range(0, len(annotations)):
|
|
@@ -86,126 +88,171 @@ def get_bbox_from_mask(mask):
|
|
| 86 |
w = x2 - x1
|
| 87 |
return [x1, y1, x2, y2]
|
| 88 |
|
|
|
|
| 89 |
def fast_process(
|
| 90 |
-
annotations,
|
| 91 |
-
|
| 92 |
-
device,
|
| 93 |
-
scale,
|
| 94 |
-
better_quality=False,
|
| 95 |
-
mask_random_color=True,
|
| 96 |
-
bbox=None,
|
| 97 |
-
use_retina=True,
|
| 98 |
-
withContours=True,
|
| 99 |
-
):
|
| 100 |
if isinstance(annotations[0], dict):
|
| 101 |
-
annotations = [annotation[
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
if isinstance(annotations[0], torch.Tensor):
|
| 107 |
annotations = np.array(annotations.cpu())
|
| 108 |
for i, mask in enumerate(annotations):
|
| 109 |
-
mask = cv2.morphologyEx(
|
| 110 |
-
|
| 111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
annotations = np.array(annotations)
|
| 113 |
-
|
| 114 |
annotations,
|
| 115 |
plt.gca(),
|
| 116 |
random_color=mask_random_color,
|
| 117 |
bbox=bbox,
|
| 118 |
-
|
|
|
|
|
|
|
| 119 |
target_height=original_h,
|
| 120 |
target_width=original_w,
|
| 121 |
)
|
| 122 |
else:
|
| 123 |
if isinstance(annotations[0], np.ndarray):
|
| 124 |
annotations = torch.from_numpy(annotations)
|
| 125 |
-
|
| 126 |
annotations,
|
| 127 |
plt.gca(),
|
| 128 |
-
random_color=
|
| 129 |
bbox=bbox,
|
| 130 |
-
|
|
|
|
|
|
|
| 131 |
target_height=original_h,
|
| 132 |
target_width=original_w,
|
| 133 |
)
|
| 134 |
if isinstance(annotations, torch.Tensor):
|
| 135 |
annotations = annotations.cpu().numpy()
|
| 136 |
-
|
| 137 |
-
if withContours:
|
| 138 |
contour_all = []
|
| 139 |
temp = np.zeros((original_h, original_w, 1))
|
| 140 |
for i, mask in enumerate(annotations):
|
| 141 |
if type(mask) == dict:
|
| 142 |
-
mask = mask[
|
| 143 |
annotation = mask.astype(np.uint8)
|
| 144 |
-
if
|
| 145 |
annotation = cv2.resize(
|
| 146 |
annotation,
|
| 147 |
(original_w, original_h),
|
| 148 |
interpolation=cv2.INTER_NEAREST,
|
| 149 |
)
|
| 150 |
-
contours,
|
|
|
|
|
|
|
| 151 |
for contour in contours:
|
| 152 |
contour_all.append(contour)
|
| 153 |
-
cv2.drawContours(temp, contour_all, -1, (255, 255, 255), 2
|
| 154 |
-
color = np.array([0 / 255, 0 / 255, 255 / 255, 0.
|
| 155 |
contour_mask = temp / 255 * color.reshape(1, 1, -1)
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
def fast_show_mask(
|
| 170 |
annotation,
|
| 171 |
ax,
|
| 172 |
random_color=False,
|
| 173 |
bbox=None,
|
|
|
|
|
|
|
| 174 |
retinamask=True,
|
| 175 |
target_height=960,
|
| 176 |
target_width=960,
|
| 177 |
):
|
| 178 |
-
|
| 179 |
height = annotation.shape[1]
|
| 180 |
weight = annotation.shape[2]
|
| 181 |
# 将annotation 按照面积 排序
|
| 182 |
areas = np.sum(annotation, axis=(1, 2))
|
| 183 |
-
sorted_indices = np.argsort(areas)
|
| 184 |
annotation = annotation[sorted_indices]
|
| 185 |
|
| 186 |
index = (annotation != 0).argmax(axis=0)
|
| 187 |
if random_color == True:
|
| 188 |
-
color = np.random.random((
|
| 189 |
else:
|
| 190 |
-
color = np.ones((
|
| 191 |
-
|
|
|
|
|
|
|
| 192 |
visual = np.concatenate([color, transparency], axis=-1)
|
| 193 |
mask_image = np.expand_dims(annotation, -1) * visual
|
| 194 |
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
|
|
|
| 198 |
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
|
| 199 |
-
|
| 200 |
-
|
| 201 |
if bbox is not None:
|
| 202 |
x1, y1, x2, y2 = bbox
|
| 203 |
-
ax.add_patch(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
|
| 205 |
if retinamask == False:
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
|
|
|
| 209 |
|
| 210 |
|
| 211 |
def fast_show_mask_gpu(
|
|
@@ -213,12 +260,13 @@ def fast_show_mask_gpu(
|
|
| 213 |
ax,
|
| 214 |
random_color=False,
|
| 215 |
bbox=None,
|
|
|
|
|
|
|
| 216 |
retinamask=True,
|
| 217 |
target_height=960,
|
| 218 |
target_width=960,
|
| 219 |
):
|
| 220 |
-
|
| 221 |
-
mask_sum = annotation.shape[0]
|
| 222 |
height = annotation.shape[1]
|
| 223 |
weight = annotation.shape[2]
|
| 224 |
areas = torch.sum(annotation, dim=(1, 2))
|
|
@@ -227,21 +275,23 @@ def fast_show_mask_gpu(
|
|
| 227 |
# 找每个位置第一个非零值下标
|
| 228 |
index = (annotation != 0).to(torch.long).argmax(dim=0)
|
| 229 |
if random_color == True:
|
| 230 |
-
color = torch.rand((
|
| 231 |
else:
|
| 232 |
-
color = torch.ones((
|
| 233 |
[30 / 255, 144 / 255, 255 / 255]
|
| 234 |
-
).to(device)
|
| 235 |
-
transparency = torch.ones((
|
| 236 |
visual = torch.cat([color, transparency], dim=-1)
|
| 237 |
mask_image = torch.unsqueeze(annotation, -1) * visual
|
| 238 |
# 按index取数,index指每个位置选哪个batch的数,把mask_image转成一个batch的形式
|
| 239 |
-
|
| 240 |
-
h_indices, w_indices = torch.meshgrid(
|
|
|
|
|
|
|
| 241 |
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
|
| 242 |
# 使用向量化索引更新show的值
|
| 243 |
-
|
| 244 |
-
|
| 245 |
if bbox is not None:
|
| 246 |
x1, y1, x2, y2 = bbox
|
| 247 |
ax.add_patch(
|
|
@@ -249,31 +299,48 @@ def fast_show_mask_gpu(
|
|
| 249 |
(x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor="b", linewidth=1
|
| 250 |
)
|
| 251 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 252 |
if retinamask == False:
|
| 253 |
-
|
| 254 |
-
|
| 255 |
)
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
#
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
def crop_image(annotations,
|
| 276 |
-
|
|
|
|
|
|
|
|
|
|
| 277 |
ori_w, ori_h = image.size
|
| 278 |
mask_h, mask_w = annotations[0]["segmentation"].shape
|
| 279 |
if ori_w != mask_w or ori_h != mask_h:
|
|
@@ -324,7 +391,7 @@ def box_prompt(masks, bbox, target_height, target_width):
|
|
| 324 |
return masks[max_iou_index].cpu().numpy(), max_iou_index
|
| 325 |
|
| 326 |
|
| 327 |
-
def point_prompt(masks, points,
|
| 328 |
h = masks[0]["segmentation"].shape[0]
|
| 329 |
w = masks[0]["segmentation"].shape[1]
|
| 330 |
if h != target_height or w != target_width:
|
|
@@ -339,23 +406,23 @@ def point_prompt(masks, points, pointlabel, target_height, target_width): # num
|
|
| 339 |
else:
|
| 340 |
mask = annotation
|
| 341 |
for i, point in enumerate(points):
|
| 342 |
-
if mask[point[1], point[0]] == 1 and
|
| 343 |
onemask += mask
|
| 344 |
-
if mask[point[1], point[0]] == 1 and
|
| 345 |
onemask -= mask
|
| 346 |
onemask = onemask >= 1
|
| 347 |
return onemask, 0
|
| 348 |
|
| 349 |
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
|
|
|
| 3 |
import matplotlib.pyplot as plt
|
| 4 |
import cv2
|
| 5 |
import torch
|
| 6 |
+
import os
|
| 7 |
+
import sys
|
| 8 |
+
import clip
|
| 9 |
|
| 10 |
|
| 11 |
def convert_box_xywh_to_xyxy(box):
|
|
|
|
| 51 |
return annotations
|
| 52 |
|
| 53 |
|
| 54 |
+
def filter_masks(annotations): # filter the overlap mask
|
| 55 |
annotations.sort(key=lambda x: x["area"], reverse=True)
|
| 56 |
to_remove = set()
|
| 57 |
for i in range(0, len(annotations)):
|
|
|
|
| 88 |
w = x2 - x1
|
| 89 |
return [x1, y1, x2, y2]
|
| 90 |
|
| 91 |
+
|
| 92 |
def fast_process(
|
| 93 |
+
annotations, args, mask_random_color, bbox=None, points=None, edges=False
|
| 94 |
+
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
if isinstance(annotations[0], dict):
|
| 96 |
+
annotations = [annotation["segmentation"] for annotation in annotations]
|
| 97 |
+
result_name = os.path.basename(args.img_path)
|
| 98 |
+
image = cv2.imread(args.img_path)
|
| 99 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 100 |
+
original_h = image.shape[0]
|
| 101 |
+
original_w = image.shape[1]
|
| 102 |
+
if sys.platform == "darwin":
|
| 103 |
+
plt.switch_backend("TkAgg")
|
| 104 |
+
plt.figure(figsize=(original_w/100, original_h/100))
|
| 105 |
+
# Add subplot with no margin.
|
| 106 |
+
plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0)
|
| 107 |
+
plt.margins(0, 0)
|
| 108 |
+
plt.gca().xaxis.set_major_locator(plt.NullLocator())
|
| 109 |
+
plt.gca().yaxis.set_major_locator(plt.NullLocator())
|
| 110 |
+
plt.imshow(image)
|
| 111 |
+
if args.better_quality == True:
|
| 112 |
if isinstance(annotations[0], torch.Tensor):
|
| 113 |
annotations = np.array(annotations.cpu())
|
| 114 |
for i, mask in enumerate(annotations):
|
| 115 |
+
mask = cv2.morphologyEx(
|
| 116 |
+
mask.astype(np.uint8), cv2.MORPH_CLOSE, np.ones((3, 3), np.uint8)
|
| 117 |
+
)
|
| 118 |
+
annotations[i] = cv2.morphologyEx(
|
| 119 |
+
mask.astype(np.uint8), cv2.MORPH_OPEN, np.ones((8, 8), np.uint8)
|
| 120 |
+
)
|
| 121 |
+
if args.device == "cpu":
|
| 122 |
annotations = np.array(annotations)
|
| 123 |
+
fast_show_mask(
|
| 124 |
annotations,
|
| 125 |
plt.gca(),
|
| 126 |
random_color=mask_random_color,
|
| 127 |
bbox=bbox,
|
| 128 |
+
points=points,
|
| 129 |
+
point_label=args.point_label,
|
| 130 |
+
retinamask=args.retina,
|
| 131 |
target_height=original_h,
|
| 132 |
target_width=original_w,
|
| 133 |
)
|
| 134 |
else:
|
| 135 |
if isinstance(annotations[0], np.ndarray):
|
| 136 |
annotations = torch.from_numpy(annotations)
|
| 137 |
+
fast_show_mask_gpu(
|
| 138 |
annotations,
|
| 139 |
plt.gca(),
|
| 140 |
+
random_color=args.randomcolor,
|
| 141 |
bbox=bbox,
|
| 142 |
+
points=points,
|
| 143 |
+
point_label=args.point_label,
|
| 144 |
+
retinamask=args.retina,
|
| 145 |
target_height=original_h,
|
| 146 |
target_width=original_w,
|
| 147 |
)
|
| 148 |
if isinstance(annotations, torch.Tensor):
|
| 149 |
annotations = annotations.cpu().numpy()
|
| 150 |
+
if args.withContours == True:
|
|
|
|
| 151 |
contour_all = []
|
| 152 |
temp = np.zeros((original_h, original_w, 1))
|
| 153 |
for i, mask in enumerate(annotations):
|
| 154 |
if type(mask) == dict:
|
| 155 |
+
mask = mask["segmentation"]
|
| 156 |
annotation = mask.astype(np.uint8)
|
| 157 |
+
if args.retina == False:
|
| 158 |
annotation = cv2.resize(
|
| 159 |
annotation,
|
| 160 |
(original_w, original_h),
|
| 161 |
interpolation=cv2.INTER_NEAREST,
|
| 162 |
)
|
| 163 |
+
contours, hierarchy = cv2.findContours(
|
| 164 |
+
annotation, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE
|
| 165 |
+
)
|
| 166 |
for contour in contours:
|
| 167 |
contour_all.append(contour)
|
| 168 |
+
cv2.drawContours(temp, contour_all, -1, (255, 255, 255), 2)
|
| 169 |
+
color = np.array([0 / 255, 0 / 255, 255 / 255, 0.8])
|
| 170 |
contour_mask = temp / 255 * color.reshape(1, 1, -1)
|
| 171 |
+
plt.imshow(contour_mask)
|
| 172 |
+
|
| 173 |
+
save_path = args.output
|
| 174 |
+
if not os.path.exists(save_path):
|
| 175 |
+
os.makedirs(save_path)
|
| 176 |
+
plt.axis("off")
|
| 177 |
+
fig = plt.gcf()
|
| 178 |
+
plt.draw()
|
| 179 |
+
|
| 180 |
+
try:
|
| 181 |
+
buf = fig.canvas.tostring_rgb()
|
| 182 |
+
except AttributeError:
|
| 183 |
+
fig.canvas.draw()
|
| 184 |
+
buf = fig.canvas.tostring_rgb()
|
| 185 |
+
|
| 186 |
+
cols, rows = fig.canvas.get_width_height()
|
| 187 |
+
img_array = np.fromstring(buf, dtype=np.uint8).reshape(rows, cols, 3)
|
| 188 |
+
cv2.imwrite(os.path.join(save_path, result_name), cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR))
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
# CPU post process
|
| 192 |
def fast_show_mask(
|
| 193 |
annotation,
|
| 194 |
ax,
|
| 195 |
random_color=False,
|
| 196 |
bbox=None,
|
| 197 |
+
points=None,
|
| 198 |
+
point_label=None,
|
| 199 |
retinamask=True,
|
| 200 |
target_height=960,
|
| 201 |
target_width=960,
|
| 202 |
):
|
| 203 |
+
msak_sum = annotation.shape[0]
|
| 204 |
height = annotation.shape[1]
|
| 205 |
weight = annotation.shape[2]
|
| 206 |
# 将annotation 按照面积 排序
|
| 207 |
areas = np.sum(annotation, axis=(1, 2))
|
| 208 |
+
sorted_indices = np.argsort(areas)
|
| 209 |
annotation = annotation[sorted_indices]
|
| 210 |
|
| 211 |
index = (annotation != 0).argmax(axis=0)
|
| 212 |
if random_color == True:
|
| 213 |
+
color = np.random.random((msak_sum, 1, 1, 3))
|
| 214 |
else:
|
| 215 |
+
color = np.ones((msak_sum, 1, 1, 3)) * np.array(
|
| 216 |
+
[30 / 255, 144 / 255, 255 / 255]
|
| 217 |
+
)
|
| 218 |
+
transparency = np.ones((msak_sum, 1, 1, 1)) * 0.6
|
| 219 |
visual = np.concatenate([color, transparency], axis=-1)
|
| 220 |
mask_image = np.expand_dims(annotation, -1) * visual
|
| 221 |
|
| 222 |
+
show = np.zeros((height, weight, 4))
|
| 223 |
+
h_indices, w_indices = np.meshgrid(
|
| 224 |
+
np.arange(height), np.arange(weight), indexing="ij"
|
| 225 |
+
)
|
| 226 |
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
|
| 227 |
+
# 使用向量化索引更新show的值
|
| 228 |
+
show[h_indices, w_indices, :] = mask_image[indices]
|
| 229 |
if bbox is not None:
|
| 230 |
x1, y1, x2, y2 = bbox
|
| 231 |
+
ax.add_patch(
|
| 232 |
+
plt.Rectangle(
|
| 233 |
+
(x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor="b", linewidth=1
|
| 234 |
+
)
|
| 235 |
+
)
|
| 236 |
+
# draw point
|
| 237 |
+
if points is not None:
|
| 238 |
+
plt.scatter(
|
| 239 |
+
[point[0] for i, point in enumerate(points) if point_label[i] == 1],
|
| 240 |
+
[point[1] for i, point in enumerate(points) if point_label[i] == 1],
|
| 241 |
+
s=20,
|
| 242 |
+
c="y",
|
| 243 |
+
)
|
| 244 |
+
plt.scatter(
|
| 245 |
+
[point[0] for i, point in enumerate(points) if point_label[i] == 0],
|
| 246 |
+
[point[1] for i, point in enumerate(points) if point_label[i] == 0],
|
| 247 |
+
s=20,
|
| 248 |
+
c="m",
|
| 249 |
+
)
|
| 250 |
|
| 251 |
if retinamask == False:
|
| 252 |
+
show = cv2.resize(
|
| 253 |
+
show, (target_width, target_height), interpolation=cv2.INTER_NEAREST
|
| 254 |
+
)
|
| 255 |
+
ax.imshow(show)
|
| 256 |
|
| 257 |
|
| 258 |
def fast_show_mask_gpu(
|
|
|
|
| 260 |
ax,
|
| 261 |
random_color=False,
|
| 262 |
bbox=None,
|
| 263 |
+
points=None,
|
| 264 |
+
point_label=None,
|
| 265 |
retinamask=True,
|
| 266 |
target_height=960,
|
| 267 |
target_width=960,
|
| 268 |
):
|
| 269 |
+
msak_sum = annotation.shape[0]
|
|
|
|
| 270 |
height = annotation.shape[1]
|
| 271 |
weight = annotation.shape[2]
|
| 272 |
areas = torch.sum(annotation, dim=(1, 2))
|
|
|
|
| 275 |
# 找每个位置第一个非零值下标
|
| 276 |
index = (annotation != 0).to(torch.long).argmax(dim=0)
|
| 277 |
if random_color == True:
|
| 278 |
+
color = torch.rand((msak_sum, 1, 1, 3)).to(annotation.device)
|
| 279 |
else:
|
| 280 |
+
color = torch.ones((msak_sum, 1, 1, 3)).to(annotation.device) * torch.tensor(
|
| 281 |
[30 / 255, 144 / 255, 255 / 255]
|
| 282 |
+
).to(annotation.device)
|
| 283 |
+
transparency = torch.ones((msak_sum, 1, 1, 1)).to(annotation.device) * 0.6
|
| 284 |
visual = torch.cat([color, transparency], dim=-1)
|
| 285 |
mask_image = torch.unsqueeze(annotation, -1) * visual
|
| 286 |
# 按index取数,index指每个位置选哪个batch的数,把mask_image转成一个batch的形式
|
| 287 |
+
show = torch.zeros((height, weight, 4)).to(annotation.device)
|
| 288 |
+
h_indices, w_indices = torch.meshgrid(
|
| 289 |
+
torch.arange(height), torch.arange(weight), indexing="ij"
|
| 290 |
+
)
|
| 291 |
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
|
| 292 |
# 使用向量化索引更新show的值
|
| 293 |
+
show[h_indices, w_indices, :] = mask_image[indices]
|
| 294 |
+
show_cpu = show.cpu().numpy()
|
| 295 |
if bbox is not None:
|
| 296 |
x1, y1, x2, y2 = bbox
|
| 297 |
ax.add_patch(
|
|
|
|
| 299 |
(x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor="b", linewidth=1
|
| 300 |
)
|
| 301 |
)
|
| 302 |
+
# draw point
|
| 303 |
+
if points is not None:
|
| 304 |
+
plt.scatter(
|
| 305 |
+
[point[0] for i, point in enumerate(points) if point_label[i] == 1],
|
| 306 |
+
[point[1] for i, point in enumerate(points) if point_label[i] == 1],
|
| 307 |
+
s=20,
|
| 308 |
+
c="y",
|
| 309 |
+
)
|
| 310 |
+
plt.scatter(
|
| 311 |
+
[point[0] for i, point in enumerate(points) if point_label[i] == 0],
|
| 312 |
+
[point[1] for i, point in enumerate(points) if point_label[i] == 0],
|
| 313 |
+
s=20,
|
| 314 |
+
c="m",
|
| 315 |
+
)
|
| 316 |
if retinamask == False:
|
| 317 |
+
show_cpu = cv2.resize(
|
| 318 |
+
show_cpu, (target_width, target_height), interpolation=cv2.INTER_NEAREST
|
| 319 |
)
|
| 320 |
+
ax.imshow(show_cpu)
|
| 321 |
+
|
| 322 |
+
|
| 323 |
+
# clip
|
| 324 |
+
@torch.no_grad()
|
| 325 |
+
def retriev(
|
| 326 |
+
model, preprocess, elements, search_text: str, device
|
| 327 |
+
) -> int:
|
| 328 |
+
preprocessed_images = [preprocess(image).to(device) for image in elements]
|
| 329 |
+
tokenized_text = clip.tokenize([search_text]).to(device)
|
| 330 |
+
stacked_images = torch.stack(preprocessed_images)
|
| 331 |
+
image_features = model.encode_image(stacked_images)
|
| 332 |
+
text_features = model.encode_text(tokenized_text)
|
| 333 |
+
image_features /= image_features.norm(dim=-1, keepdim=True)
|
| 334 |
+
text_features /= text_features.norm(dim=-1, keepdim=True)
|
| 335 |
+
probs = 100.0 * image_features @ text_features.T
|
| 336 |
+
return probs[:, 0].softmax(dim=0)
|
| 337 |
+
|
| 338 |
+
|
| 339 |
+
def crop_image(annotations, image_like):
|
| 340 |
+
if isinstance(image_like, str):
|
| 341 |
+
image = Image.open(image_like)
|
| 342 |
+
else:
|
| 343 |
+
image = image_like
|
| 344 |
ori_w, ori_h = image.size
|
| 345 |
mask_h, mask_w = annotations[0]["segmentation"].shape
|
| 346 |
if ori_w != mask_w or ori_h != mask_h:
|
|
|
|
| 391 |
return masks[max_iou_index].cpu().numpy(), max_iou_index
|
| 392 |
|
| 393 |
|
| 394 |
+
def point_prompt(masks, points, point_label, target_height, target_width): # numpy 处理
|
| 395 |
h = masks[0]["segmentation"].shape[0]
|
| 396 |
w = masks[0]["segmentation"].shape[1]
|
| 397 |
if h != target_height or w != target_width:
|
|
|
|
| 406 |
else:
|
| 407 |
mask = annotation
|
| 408 |
for i, point in enumerate(points):
|
| 409 |
+
if mask[point[1], point[0]] == 1 and point_label[i] == 1:
|
| 410 |
onemask += mask
|
| 411 |
+
if mask[point[1], point[0]] == 1 and point_label[i] == 0:
|
| 412 |
onemask -= mask
|
| 413 |
onemask = onemask >= 1
|
| 414 |
return onemask, 0
|
| 415 |
|
| 416 |
|
| 417 |
+
def text_prompt(annotations, text, img_path, device):
|
| 418 |
+
cropped_boxes, cropped_images, not_crop, filter_id, annotations_ = crop_image(
|
| 419 |
+
annotations, img_path
|
| 420 |
+
)
|
| 421 |
+
clip_model, preprocess = clip.load("./weights/CLIP_ViT_B_32.pt", device=device)
|
| 422 |
+
scores = retriev(
|
| 423 |
+
clip_model, preprocess, cropped_boxes, text, device=device
|
| 424 |
+
)
|
| 425 |
+
max_idx = scores.argsort()
|
| 426 |
+
max_idx = max_idx[-1]
|
| 427 |
+
max_idx += sum(np.array(filter_id) <= int(max_idx))
|
| 428 |
+
return annotations_[max_idx]["segmentation"], max_idx
|
utils/tools_gradio.py
ADDED
|
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import matplotlib.pyplot as plt
|
| 4 |
+
import cv2
|
| 5 |
+
import torch
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def fast_process(
|
| 9 |
+
annotations,
|
| 10 |
+
image,
|
| 11 |
+
device,
|
| 12 |
+
scale,
|
| 13 |
+
better_quality=False,
|
| 14 |
+
mask_random_color=True,
|
| 15 |
+
bbox=None,
|
| 16 |
+
use_retina=True,
|
| 17 |
+
withContours=True,
|
| 18 |
+
):
|
| 19 |
+
if isinstance(annotations[0], dict):
|
| 20 |
+
annotations = [annotation['segmentation'] for annotation in annotations]
|
| 21 |
+
|
| 22 |
+
original_h = image.height
|
| 23 |
+
original_w = image.width
|
| 24 |
+
if better_quality:
|
| 25 |
+
if isinstance(annotations[0], torch.Tensor):
|
| 26 |
+
annotations = np.array(annotations.cpu())
|
| 27 |
+
for i, mask in enumerate(annotations):
|
| 28 |
+
mask = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_CLOSE, np.ones((3, 3), np.uint8))
|
| 29 |
+
annotations[i] = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_OPEN, np.ones((8, 8), np.uint8))
|
| 30 |
+
if device == 'cpu':
|
| 31 |
+
annotations = np.array(annotations)
|
| 32 |
+
inner_mask = fast_show_mask(
|
| 33 |
+
annotations,
|
| 34 |
+
plt.gca(),
|
| 35 |
+
random_color=mask_random_color,
|
| 36 |
+
bbox=bbox,
|
| 37 |
+
retinamask=use_retina,
|
| 38 |
+
target_height=original_h,
|
| 39 |
+
target_width=original_w,
|
| 40 |
+
)
|
| 41 |
+
else:
|
| 42 |
+
if isinstance(annotations[0], np.ndarray):
|
| 43 |
+
annotations = torch.from_numpy(annotations)
|
| 44 |
+
inner_mask = fast_show_mask_gpu(
|
| 45 |
+
annotations,
|
| 46 |
+
plt.gca(),
|
| 47 |
+
random_color=mask_random_color,
|
| 48 |
+
bbox=bbox,
|
| 49 |
+
retinamask=use_retina,
|
| 50 |
+
target_height=original_h,
|
| 51 |
+
target_width=original_w,
|
| 52 |
+
)
|
| 53 |
+
if isinstance(annotations, torch.Tensor):
|
| 54 |
+
annotations = annotations.cpu().numpy()
|
| 55 |
+
|
| 56 |
+
if withContours:
|
| 57 |
+
contour_all = []
|
| 58 |
+
temp = np.zeros((original_h, original_w, 1))
|
| 59 |
+
for i, mask in enumerate(annotations):
|
| 60 |
+
if type(mask) == dict:
|
| 61 |
+
mask = mask['segmentation']
|
| 62 |
+
annotation = mask.astype(np.uint8)
|
| 63 |
+
if use_retina == False:
|
| 64 |
+
annotation = cv2.resize(
|
| 65 |
+
annotation,
|
| 66 |
+
(original_w, original_h),
|
| 67 |
+
interpolation=cv2.INTER_NEAREST,
|
| 68 |
+
)
|
| 69 |
+
contours, _ = cv2.findContours(annotation, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
| 70 |
+
for contour in contours:
|
| 71 |
+
contour_all.append(contour)
|
| 72 |
+
cv2.drawContours(temp, contour_all, -1, (255, 255, 255), 2 // scale)
|
| 73 |
+
color = np.array([0 / 255, 0 / 255, 255 / 255, 0.9])
|
| 74 |
+
contour_mask = temp / 255 * color.reshape(1, 1, -1)
|
| 75 |
+
|
| 76 |
+
image = image.convert('RGBA')
|
| 77 |
+
overlay_inner = Image.fromarray((inner_mask * 255).astype(np.uint8), 'RGBA')
|
| 78 |
+
image.paste(overlay_inner, (0, 0), overlay_inner)
|
| 79 |
+
|
| 80 |
+
if withContours:
|
| 81 |
+
overlay_contour = Image.fromarray((contour_mask * 255).astype(np.uint8), 'RGBA')
|
| 82 |
+
image.paste(overlay_contour, (0, 0), overlay_contour)
|
| 83 |
+
|
| 84 |
+
return image
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
# CPU post process
|
| 88 |
+
def fast_show_mask(
|
| 89 |
+
annotation,
|
| 90 |
+
ax,
|
| 91 |
+
random_color=False,
|
| 92 |
+
bbox=None,
|
| 93 |
+
retinamask=True,
|
| 94 |
+
target_height=960,
|
| 95 |
+
target_width=960,
|
| 96 |
+
):
|
| 97 |
+
mask_sum = annotation.shape[0]
|
| 98 |
+
height = annotation.shape[1]
|
| 99 |
+
weight = annotation.shape[2]
|
| 100 |
+
# 将annotation 按照面积 排序
|
| 101 |
+
areas = np.sum(annotation, axis=(1, 2))
|
| 102 |
+
sorted_indices = np.argsort(areas)[::1]
|
| 103 |
+
annotation = annotation[sorted_indices]
|
| 104 |
+
|
| 105 |
+
index = (annotation != 0).argmax(axis=0)
|
| 106 |
+
if random_color == True:
|
| 107 |
+
color = np.random.random((mask_sum, 1, 1, 3))
|
| 108 |
+
else:
|
| 109 |
+
color = np.ones((mask_sum, 1, 1, 3)) * np.array([30 / 255, 144 / 255, 255 / 255])
|
| 110 |
+
transparency = np.ones((mask_sum, 1, 1, 1)) * 0.6
|
| 111 |
+
visual = np.concatenate([color, transparency], axis=-1)
|
| 112 |
+
mask_image = np.expand_dims(annotation, -1) * visual
|
| 113 |
+
|
| 114 |
+
mask = np.zeros((height, weight, 4))
|
| 115 |
+
|
| 116 |
+
h_indices, w_indices = np.meshgrid(np.arange(height), np.arange(weight), indexing='ij')
|
| 117 |
+
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
|
| 118 |
+
|
| 119 |
+
mask[h_indices, w_indices, :] = mask_image[indices]
|
| 120 |
+
if bbox is not None:
|
| 121 |
+
x1, y1, x2, y2 = bbox
|
| 122 |
+
ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor='b', linewidth=1))
|
| 123 |
+
|
| 124 |
+
if retinamask == False:
|
| 125 |
+
mask = cv2.resize(mask, (target_width, target_height), interpolation=cv2.INTER_NEAREST)
|
| 126 |
+
|
| 127 |
+
return mask
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
def fast_show_mask_gpu(
|
| 131 |
+
annotation,
|
| 132 |
+
ax,
|
| 133 |
+
random_color=False,
|
| 134 |
+
bbox=None,
|
| 135 |
+
retinamask=True,
|
| 136 |
+
target_height=960,
|
| 137 |
+
target_width=960,
|
| 138 |
+
):
|
| 139 |
+
device = annotation.device
|
| 140 |
+
mask_sum = annotation.shape[0]
|
| 141 |
+
height = annotation.shape[1]
|
| 142 |
+
weight = annotation.shape[2]
|
| 143 |
+
areas = torch.sum(annotation, dim=(1, 2))
|
| 144 |
+
sorted_indices = torch.argsort(areas, descending=False)
|
| 145 |
+
annotation = annotation[sorted_indices]
|
| 146 |
+
# 找每个位置第一个非���值下标
|
| 147 |
+
index = (annotation != 0).to(torch.long).argmax(dim=0)
|
| 148 |
+
if random_color == True:
|
| 149 |
+
color = torch.rand((mask_sum, 1, 1, 3)).to(device)
|
| 150 |
+
else:
|
| 151 |
+
color = torch.ones((mask_sum, 1, 1, 3)).to(device) * torch.tensor(
|
| 152 |
+
[30 / 255, 144 / 255, 255 / 255]
|
| 153 |
+
).to(device)
|
| 154 |
+
transparency = torch.ones((mask_sum, 1, 1, 1)).to(device) * 0.6
|
| 155 |
+
visual = torch.cat([color, transparency], dim=-1)
|
| 156 |
+
mask_image = torch.unsqueeze(annotation, -1) * visual
|
| 157 |
+
# 按index取数,index指每个位置选哪个batch的数,把mask_image转成一个batch的形式
|
| 158 |
+
mask = torch.zeros((height, weight, 4)).to(device)
|
| 159 |
+
h_indices, w_indices = torch.meshgrid(torch.arange(height), torch.arange(weight))
|
| 160 |
+
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
|
| 161 |
+
# 使用向量化索引更新show的值
|
| 162 |
+
mask[h_indices, w_indices, :] = mask_image[indices]
|
| 163 |
+
mask_cpu = mask.cpu().numpy()
|
| 164 |
+
if bbox is not None:
|
| 165 |
+
x1, y1, x2, y2 = bbox
|
| 166 |
+
ax.add_patch(
|
| 167 |
+
plt.Rectangle(
|
| 168 |
+
(x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor="b", linewidth=1
|
| 169 |
+
)
|
| 170 |
+
)
|
| 171 |
+
if retinamask == False:
|
| 172 |
+
mask_cpu = cv2.resize(
|
| 173 |
+
mask_cpu, (target_width, target_height), interpolation=cv2.INTER_NEAREST
|
| 174 |
+
)
|
| 175 |
+
return mask_cpu
|