Spaces:
Runtime error
Runtime error
AAAAAAAyq
commited on
Commit
·
e4f0b1d
1
Parent(s):
5778432
Add a wider result
Browse files- app_gradio.py +50 -46
- utils/tools.py +29 -16
- utils/tools_gradio.py +4 -4
app_gradio.py
CHANGED
|
@@ -21,6 +21,8 @@ device = torch.device(
|
|
| 21 |
title = "<center><strong><font size='8'>🏃 Fast Segment Anything 🤗</font></strong></center>"
|
| 22 |
|
| 23 |
news = """ # 📖 News
|
|
|
|
|
|
|
| 24 |
🔥 2023/06/29: Support the text mode (Thanks for [gaoxinge](https://github.com/CASIA-IVA-Lab/FastSAM/pull/47)).
|
| 25 |
|
| 26 |
🔥 2023/06/26: Support the points mode. (Better and faster interaction will come soon!)
|
|
@@ -76,6 +78,7 @@ def segment_everything(
|
|
| 76 |
withContours=True,
|
| 77 |
use_retina=True,
|
| 78 |
text="",
|
|
|
|
| 79 |
mask_random_color=True,
|
| 80 |
):
|
| 81 |
input_size = int(input_size) # 确保 imgsz 是整数
|
|
@@ -95,7 +98,7 @@ def segment_everything(
|
|
| 95 |
|
| 96 |
if len(text) > 0:
|
| 97 |
results = format_results(results[0], 0)
|
| 98 |
-
annotations, _ = text_prompt(results, text, input, device=device)
|
| 99 |
annotations = np.array([annotations])
|
| 100 |
else:
|
| 101 |
annotations = results[0].masks.data
|
|
@@ -189,7 +192,7 @@ segm_img_t = gr.Image(label="Segmented Image with text", interactive=False, type
|
|
| 189 |
global_points = []
|
| 190 |
global_point_label = []
|
| 191 |
|
| 192 |
-
|
| 193 |
maximum=1024,
|
| 194 |
value=1024,
|
| 195 |
step=64,
|
|
@@ -218,10 +221,10 @@ with gr.Blocks(css=css, title='Fast Segment Anything') as demo:
|
|
| 218 |
# Submit & Clear
|
| 219 |
with gr.Row():
|
| 220 |
with gr.Column():
|
| 221 |
-
|
| 222 |
|
| 223 |
with gr.Row():
|
| 224 |
-
|
| 225 |
|
| 226 |
with gr.Column():
|
| 227 |
segment_btn_e = gr.Button("Segment Everything", variant='primary')
|
|
@@ -237,16 +240,28 @@ with gr.Blocks(css=css, title='Fast Segment Anything') as demo:
|
|
| 237 |
|
| 238 |
with gr.Column():
|
| 239 |
with gr.Accordion("Advanced options", open=False):
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
conf_threshold_e = gr.Slider(0.1, 0.9, 0.25, step=0.05, label='conf', info='object confidence threshold')
|
| 243 |
with gr.Row():
|
| 244 |
-
|
| 245 |
with gr.Column():
|
| 246 |
-
|
|
|
|
| 247 |
# Description
|
| 248 |
gr.Markdown(description_e)
|
| 249 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 250 |
with gr.Tab("Points mode"):
|
| 251 |
# Images
|
| 252 |
with gr.Row(variant="panel"):
|
|
@@ -277,7 +292,13 @@ with gr.Blocks(css=css, title='Fast Segment Anything') as demo:
|
|
| 277 |
with gr.Column():
|
| 278 |
# Description
|
| 279 |
gr.Markdown(description_p)
|
| 280 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 281 |
with gr.Tab("Text mode"):
|
| 282 |
# Images
|
| 283 |
with gr.Row(variant="panel"):
|
|
@@ -291,14 +312,14 @@ with gr.Blocks(css=css, title='Fast Segment Anything') as demo:
|
|
| 291 |
with gr.Row():
|
| 292 |
with gr.Column():
|
| 293 |
input_size_slider_t = gr.components.Slider(minimum=512,
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
with gr.Row():
|
| 300 |
with gr.Column():
|
| 301 |
-
|
| 302 |
text_box = gr.Textbox(label="text prompt", value="a black dog")
|
| 303 |
|
| 304 |
with gr.Column():
|
|
@@ -306,7 +327,7 @@ with gr.Blocks(css=css, title='Fast Segment Anything') as demo:
|
|
| 306 |
clear_btn_t = gr.Button("Clear", variant="secondary")
|
| 307 |
|
| 308 |
gr.Markdown("Try some of the examples below ⬇️")
|
| 309 |
-
gr.Examples(examples=["examples/dogs.jpg"],
|
| 310 |
inputs=[cond_img_e],
|
| 311 |
# outputs=segm_img_e,
|
| 312 |
# fn=segment_everything,
|
|
@@ -315,44 +336,27 @@ with gr.Blocks(css=css, title='Fast Segment Anything') as demo:
|
|
| 315 |
|
| 316 |
with gr.Column():
|
| 317 |
with gr.Accordion("Advanced options", open=False):
|
| 318 |
-
|
| 319 |
-
|
| 320 |
with gr.Row():
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
|
| 325 |
# Description
|
| 326 |
gr.Markdown(description_e)
|
| 327 |
-
|
| 328 |
-
cond_img_p.select(get_points_with_draw, [cond_img_p, add_or_remove], cond_img_p)
|
| 329 |
-
|
| 330 |
-
segment_btn_e.click(segment_everything,
|
| 331 |
-
inputs=[
|
| 332 |
-
cond_img_e,
|
| 333 |
-
input_size_slider_e,
|
| 334 |
-
iou_threshold_e,
|
| 335 |
-
conf_threshold_e,
|
| 336 |
-
mor_check_e,
|
| 337 |
-
contour_check_e,
|
| 338 |
-
retina_check_e,
|
| 339 |
-
],
|
| 340 |
-
outputs=segm_img_e)
|
| 341 |
-
|
| 342 |
-
segment_btn_p.click(segment_with_points,
|
| 343 |
-
inputs=[cond_img_p],
|
| 344 |
-
outputs=[segm_img_p, cond_img_p])
|
| 345 |
|
| 346 |
segment_btn_t.click(segment_everything,
|
| 347 |
inputs=[
|
| 348 |
cond_img_t,
|
| 349 |
input_size_slider_t,
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
text_box,
|
|
|
|
| 356 |
],
|
| 357 |
outputs=segm_img_t)
|
| 358 |
|
|
@@ -361,7 +365,7 @@ with gr.Blocks(css=css, title='Fast Segment Anything') as demo:
|
|
| 361 |
|
| 362 |
def clear_text():
|
| 363 |
return None, None, None
|
| 364 |
-
|
| 365 |
clear_btn_e.click(clear, outputs=[cond_img_e, segm_img_e])
|
| 366 |
clear_btn_p.click(clear, outputs=[cond_img_p, segm_img_p])
|
| 367 |
clear_btn_t.click(clear_text, outputs=[cond_img_p, segm_img_p, text_box])
|
|
|
|
| 21 |
title = "<center><strong><font size='8'>🏃 Fast Segment Anything 🤗</font></strong></center>"
|
| 22 |
|
| 23 |
news = """ # 📖 News
|
| 24 |
+
🔥 2023/07/14: Add a "wider result" button in text mode (Thanks for [gaoxinge](https://github.com/CASIA-IVA-Lab/FastSAM/pull/95)).
|
| 25 |
+
|
| 26 |
🔥 2023/06/29: Support the text mode (Thanks for [gaoxinge](https://github.com/CASIA-IVA-Lab/FastSAM/pull/47)).
|
| 27 |
|
| 28 |
🔥 2023/06/26: Support the points mode. (Better and faster interaction will come soon!)
|
|
|
|
| 78 |
withContours=True,
|
| 79 |
use_retina=True,
|
| 80 |
text="",
|
| 81 |
+
wider=False,
|
| 82 |
mask_random_color=True,
|
| 83 |
):
|
| 84 |
input_size = int(input_size) # 确保 imgsz 是整数
|
|
|
|
| 98 |
|
| 99 |
if len(text) > 0:
|
| 100 |
results = format_results(results[0], 0)
|
| 101 |
+
annotations, _ = text_prompt(results, text, input, device=device, wider=wider)
|
| 102 |
annotations = np.array([annotations])
|
| 103 |
else:
|
| 104 |
annotations = results[0].masks.data
|
|
|
|
| 192 |
global_points = []
|
| 193 |
global_point_label = []
|
| 194 |
|
| 195 |
+
input_size_slider = gr.components.Slider(minimum=512,
|
| 196 |
maximum=1024,
|
| 197 |
value=1024,
|
| 198 |
step=64,
|
|
|
|
| 221 |
# Submit & Clear
|
| 222 |
with gr.Row():
|
| 223 |
with gr.Column():
|
| 224 |
+
input_size_slider.render()
|
| 225 |
|
| 226 |
with gr.Row():
|
| 227 |
+
contour_check = gr.Checkbox(value=True, label='withContours', info='draw the edges of the masks')
|
| 228 |
|
| 229 |
with gr.Column():
|
| 230 |
segment_btn_e = gr.Button("Segment Everything", variant='primary')
|
|
|
|
| 240 |
|
| 241 |
with gr.Column():
|
| 242 |
with gr.Accordion("Advanced options", open=False):
|
| 243 |
+
iou_threshold = gr.Slider(0.1, 0.9, 0.7, step=0.1, label='iou', info='iou threshold for filtering the annotations')
|
| 244 |
+
conf_threshold = gr.Slider(0.1, 0.9, 0.25, step=0.05, label='conf', info='object confidence threshold')
|
|
|
|
| 245 |
with gr.Row():
|
| 246 |
+
mor_check = gr.Checkbox(value=False, label='better_visual_quality', info='better quality using morphologyEx')
|
| 247 |
with gr.Column():
|
| 248 |
+
retina_check = gr.Checkbox(value=True, label='use_retina', info='draw high-resolution segmentation masks')
|
| 249 |
+
|
| 250 |
# Description
|
| 251 |
gr.Markdown(description_e)
|
| 252 |
|
| 253 |
+
segment_btn_e.click(segment_everything,
|
| 254 |
+
inputs=[
|
| 255 |
+
cond_img_e,
|
| 256 |
+
input_size_slider,
|
| 257 |
+
iou_threshold,
|
| 258 |
+
conf_threshold,
|
| 259 |
+
mor_check,
|
| 260 |
+
contour_check,
|
| 261 |
+
retina_check,
|
| 262 |
+
],
|
| 263 |
+
outputs=segm_img_e)
|
| 264 |
+
|
| 265 |
with gr.Tab("Points mode"):
|
| 266 |
# Images
|
| 267 |
with gr.Row(variant="panel"):
|
|
|
|
| 292 |
with gr.Column():
|
| 293 |
# Description
|
| 294 |
gr.Markdown(description_p)
|
| 295 |
+
|
| 296 |
+
cond_img_p.select(get_points_with_draw, [cond_img_p, add_or_remove], cond_img_p)
|
| 297 |
+
|
| 298 |
+
segment_btn_p.click(segment_with_points,
|
| 299 |
+
inputs=[cond_img_p],
|
| 300 |
+
outputs=[segm_img_p, cond_img_p])
|
| 301 |
+
|
| 302 |
with gr.Tab("Text mode"):
|
| 303 |
# Images
|
| 304 |
with gr.Row(variant="panel"):
|
|
|
|
| 312 |
with gr.Row():
|
| 313 |
with gr.Column():
|
| 314 |
input_size_slider_t = gr.components.Slider(minimum=512,
|
| 315 |
+
maximum=1024,
|
| 316 |
+
value=1024,
|
| 317 |
+
step=64,
|
| 318 |
+
label='Input_size',
|
| 319 |
+
info='Our model was trained on a size of 1024')
|
| 320 |
with gr.Row():
|
| 321 |
with gr.Column():
|
| 322 |
+
contour_check = gr.Checkbox(value=True, label='withContours', info='draw the edges of the masks')
|
| 323 |
text_box = gr.Textbox(label="text prompt", value="a black dog")
|
| 324 |
|
| 325 |
with gr.Column():
|
|
|
|
| 327 |
clear_btn_t = gr.Button("Clear", variant="secondary")
|
| 328 |
|
| 329 |
gr.Markdown("Try some of the examples below ⬇️")
|
| 330 |
+
gr.Examples(examples=[["examples/dogs.jpg"]] + examples,
|
| 331 |
inputs=[cond_img_e],
|
| 332 |
# outputs=segm_img_e,
|
| 333 |
# fn=segment_everything,
|
|
|
|
| 336 |
|
| 337 |
with gr.Column():
|
| 338 |
with gr.Accordion("Advanced options", open=False):
|
| 339 |
+
iou_threshold = gr.Slider(0.1, 0.9, 0.7, step=0.1, label='iou', info='iou threshold for filtering the annotations')
|
| 340 |
+
conf_threshold = gr.Slider(0.1, 0.9, 0.25, step=0.05, label='conf', info='object confidence threshold')
|
| 341 |
with gr.Row():
|
| 342 |
+
mor_check = gr.Checkbox(value=False, label='better_visual_quality', info='better quality using morphologyEx')
|
| 343 |
+
retina_check = gr.Checkbox(value=True, label='use_retina', info='draw high-resolution segmentation masks')
|
| 344 |
+
wider_check = gr.Checkbox(value=False, label='wider', info='wider result')
|
| 345 |
|
| 346 |
# Description
|
| 347 |
gr.Markdown(description_e)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 348 |
|
| 349 |
segment_btn_t.click(segment_everything,
|
| 350 |
inputs=[
|
| 351 |
cond_img_t,
|
| 352 |
input_size_slider_t,
|
| 353 |
+
iou_threshold,
|
| 354 |
+
conf_threshold,
|
| 355 |
+
mor_check,
|
| 356 |
+
contour_check,
|
| 357 |
+
retina_check,
|
| 358 |
text_box,
|
| 359 |
+
wider_check,
|
| 360 |
],
|
| 361 |
outputs=segm_img_t)
|
| 362 |
|
|
|
|
| 365 |
|
| 366 |
def clear_text():
|
| 367 |
return None, None, None
|
| 368 |
+
|
| 369 |
clear_btn_e.click(clear, outputs=[cond_img_e, segm_img_e])
|
| 370 |
clear_btn_p.click(clear, outputs=[cond_img_p, segm_img_p])
|
| 371 |
clear_btn_t.click(clear_text, outputs=[cond_img_p, segm_img_p, text_box])
|
utils/tools.py
CHANGED
|
@@ -9,11 +9,14 @@ import clip
|
|
| 9 |
|
| 10 |
|
| 11 |
def convert_box_xywh_to_xyxy(box):
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
|
| 19 |
def segment_image(image, bbox):
|
|
@@ -323,8 +326,8 @@ def fast_show_mask_gpu(
|
|
| 323 |
# clip
|
| 324 |
@torch.no_grad()
|
| 325 |
def retriev(
|
| 326 |
-
model, preprocess, elements, search_text: str, device
|
| 327 |
-
)
|
| 328 |
preprocessed_images = [preprocess(image).to(device) for image in elements]
|
| 329 |
tokenized_text = clip.tokenize([search_text]).to(device)
|
| 330 |
stacked_images = torch.stack(preprocessed_images)
|
|
@@ -348,19 +351,16 @@ def crop_image(annotations, image_like):
|
|
| 348 |
cropped_boxes = []
|
| 349 |
cropped_images = []
|
| 350 |
not_crop = []
|
| 351 |
-
|
| 352 |
-
# annotations, _ = filter_masks(annotations)
|
| 353 |
-
# filter_id = list(_)
|
| 354 |
for _, mask in enumerate(annotations):
|
| 355 |
if np.sum(mask["segmentation"]) <= 100:
|
| 356 |
-
filter_id.append(_)
|
| 357 |
continue
|
|
|
|
| 358 |
bbox = get_bbox_from_mask(mask["segmentation"]) # mask 的 bbox
|
| 359 |
cropped_boxes.append(segment_image(image, bbox)) # 保存裁剪的图片
|
| 360 |
# cropped_boxes.append(segment_image(image,mask["segmentation"]))
|
| 361 |
cropped_images.append(bbox) # 保存裁剪的图片的bbox
|
| 362 |
-
|
| 363 |
-
return cropped_boxes, cropped_images, not_crop, filter_id, annotations
|
| 364 |
|
| 365 |
|
| 366 |
def box_prompt(masks, bbox, target_height, target_width):
|
|
@@ -415,8 +415,8 @@ def point_prompt(masks, points, point_label, target_height, target_width): # nu
|
|
| 415 |
return onemask, 0
|
| 416 |
|
| 417 |
|
| 418 |
-
def text_prompt(annotations, text, img_path, device):
|
| 419 |
-
cropped_boxes, cropped_images, not_crop,
|
| 420 |
annotations, img_path
|
| 421 |
)
|
| 422 |
clip_model, preprocess = clip.load("./weights/CLIP_ViT_B_32.pt", device=device)
|
|
@@ -425,5 +425,18 @@ def text_prompt(annotations, text, img_path, device):
|
|
| 425 |
)
|
| 426 |
max_idx = scores.argsort()
|
| 427 |
max_idx = max_idx[-1]
|
| 428 |
-
max_idx
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 429 |
return annotations_[max_idx]["segmentation"], max_idx
|
|
|
|
| 9 |
|
| 10 |
|
| 11 |
def convert_box_xywh_to_xyxy(box):
|
| 12 |
+
if len(box) == 4:
|
| 13 |
+
return [box[0], box[1], box[0] + box[2], box[1] + box[3]]
|
| 14 |
+
else:
|
| 15 |
+
result = []
|
| 16 |
+
for b in box:
|
| 17 |
+
b = convert_box_xywh_to_xyxy(b)
|
| 18 |
+
result.append(b)
|
| 19 |
+
return result
|
| 20 |
|
| 21 |
|
| 22 |
def segment_image(image, bbox):
|
|
|
|
| 326 |
# clip
|
| 327 |
@torch.no_grad()
|
| 328 |
def retriev(
|
| 329 |
+
model, preprocess, elements: [Image.Image], search_text: str, device
|
| 330 |
+
):
|
| 331 |
preprocessed_images = [preprocess(image).to(device) for image in elements]
|
| 332 |
tokenized_text = clip.tokenize([search_text]).to(device)
|
| 333 |
stacked_images = torch.stack(preprocessed_images)
|
|
|
|
| 351 |
cropped_boxes = []
|
| 352 |
cropped_images = []
|
| 353 |
not_crop = []
|
| 354 |
+
origin_id = []
|
|
|
|
|
|
|
| 355 |
for _, mask in enumerate(annotations):
|
| 356 |
if np.sum(mask["segmentation"]) <= 100:
|
|
|
|
| 357 |
continue
|
| 358 |
+
origin_id.append(_)
|
| 359 |
bbox = get_bbox_from_mask(mask["segmentation"]) # mask 的 bbox
|
| 360 |
cropped_boxes.append(segment_image(image, bbox)) # 保存裁剪的图片
|
| 361 |
# cropped_boxes.append(segment_image(image,mask["segmentation"]))
|
| 362 |
cropped_images.append(bbox) # 保存裁剪的图片的bbox
|
| 363 |
+
return cropped_boxes, cropped_images, not_crop, origin_id, annotations
|
|
|
|
| 364 |
|
| 365 |
|
| 366 |
def box_prompt(masks, bbox, target_height, target_width):
|
|
|
|
| 415 |
return onemask, 0
|
| 416 |
|
| 417 |
|
| 418 |
+
def text_prompt(annotations, text, img_path, device, wider=False, threshold=0.9):
|
| 419 |
+
cropped_boxes, cropped_images, not_crop, origin_id, annotations_ = crop_image(
|
| 420 |
annotations, img_path
|
| 421 |
)
|
| 422 |
clip_model, preprocess = clip.load("./weights/CLIP_ViT_B_32.pt", device=device)
|
|
|
|
| 425 |
)
|
| 426 |
max_idx = scores.argsort()
|
| 427 |
max_idx = max_idx[-1]
|
| 428 |
+
max_idx = origin_id[int(max_idx)]
|
| 429 |
+
|
| 430 |
+
# find the biggest mask which contains the mask with max score
|
| 431 |
+
if wider:
|
| 432 |
+
mask0 = annotations_[max_idx]["segmentation"]
|
| 433 |
+
area0 = np.sum(mask0)
|
| 434 |
+
areas = [(i, np.sum(mask["segmentation"])) for i, mask in enumerate(annotations_) if i in origin_id]
|
| 435 |
+
areas = sorted(areas, key=lambda area: area[1], reverse=True)
|
| 436 |
+
indices = [area[0] for area in areas]
|
| 437 |
+
for index in indices:
|
| 438 |
+
if index == max_idx or np.sum(annotations_[index]["segmentation"] & mask0) / area0 > threshold:
|
| 439 |
+
max_idx = index
|
| 440 |
+
break
|
| 441 |
+
|
| 442 |
return annotations_[max_idx]["segmentation"], max_idx
|
utils/tools_gradio.py
CHANGED
|
@@ -103,7 +103,7 @@ def fast_show_mask(
|
|
| 103 |
annotation = annotation[sorted_indices]
|
| 104 |
|
| 105 |
index = (annotation != 0).argmax(axis=0)
|
| 106 |
-
if random_color
|
| 107 |
color = np.random.random((mask_sum, 1, 1, 3))
|
| 108 |
else:
|
| 109 |
color = np.ones((mask_sum, 1, 1, 3)) * np.array([30 / 255, 144 / 255, 255 / 255])
|
|
@@ -121,7 +121,7 @@ def fast_show_mask(
|
|
| 121 |
x1, y1, x2, y2 = bbox
|
| 122 |
ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor='b', linewidth=1))
|
| 123 |
|
| 124 |
-
if retinamask
|
| 125 |
mask = cv2.resize(mask, (target_width, target_height), interpolation=cv2.INTER_NEAREST)
|
| 126 |
|
| 127 |
return mask
|
|
@@ -145,7 +145,7 @@ def fast_show_mask_gpu(
|
|
| 145 |
annotation = annotation[sorted_indices]
|
| 146 |
# 找每个位置第一个非零值下标
|
| 147 |
index = (annotation != 0).to(torch.long).argmax(dim=0)
|
| 148 |
-
if random_color
|
| 149 |
color = torch.rand((mask_sum, 1, 1, 3)).to(device)
|
| 150 |
else:
|
| 151 |
color = torch.ones((mask_sum, 1, 1, 3)).to(device) * torch.tensor(
|
|
@@ -168,7 +168,7 @@ def fast_show_mask_gpu(
|
|
| 168 |
(x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor="b", linewidth=1
|
| 169 |
)
|
| 170 |
)
|
| 171 |
-
if retinamask
|
| 172 |
mask_cpu = cv2.resize(
|
| 173 |
mask_cpu, (target_width, target_height), interpolation=cv2.INTER_NEAREST
|
| 174 |
)
|
|
|
|
| 103 |
annotation = annotation[sorted_indices]
|
| 104 |
|
| 105 |
index = (annotation != 0).argmax(axis=0)
|
| 106 |
+
if random_color:
|
| 107 |
color = np.random.random((mask_sum, 1, 1, 3))
|
| 108 |
else:
|
| 109 |
color = np.ones((mask_sum, 1, 1, 3)) * np.array([30 / 255, 144 / 255, 255 / 255])
|
|
|
|
| 121 |
x1, y1, x2, y2 = bbox
|
| 122 |
ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor='b', linewidth=1))
|
| 123 |
|
| 124 |
+
if not retinamask:
|
| 125 |
mask = cv2.resize(mask, (target_width, target_height), interpolation=cv2.INTER_NEAREST)
|
| 126 |
|
| 127 |
return mask
|
|
|
|
| 145 |
annotation = annotation[sorted_indices]
|
| 146 |
# 找每个位置第一个非零值下标
|
| 147 |
index = (annotation != 0).to(torch.long).argmax(dim=0)
|
| 148 |
+
if random_color:
|
| 149 |
color = torch.rand((mask_sum, 1, 1, 3)).to(device)
|
| 150 |
else:
|
| 151 |
color = torch.ones((mask_sum, 1, 1, 3)).to(device) * torch.tensor(
|
|
|
|
| 168 |
(x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor="b", linewidth=1
|
| 169 |
)
|
| 170 |
)
|
| 171 |
+
if not retinamask:
|
| 172 |
mask_cpu = cv2.resize(
|
| 173 |
mask_cpu, (target_width, target_height), interpolation=cv2.INTER_NEAREST
|
| 174 |
)
|