Spaces:
Runtime error
Runtime error
| import argparse | |
| import os | |
| import os.path as osp | |
| import warnings | |
| import mmcv | |
| import numpy as np | |
| import onnxruntime as ort | |
| import torch | |
| from mmcv.parallel import MMDataParallel | |
| from mmcv.runner import get_dist_info | |
| from mmcv.utils import DictAction | |
| from mmseg.apis import single_gpu_test | |
| from mmseg.datasets import build_dataloader, build_dataset | |
| from mmseg.models.segmentors.base import BaseSegmentor | |
| class ONNXRuntimeSegmentor(BaseSegmentor): | |
| def __init__(self, onnx_file, cfg, device_id): | |
| super(ONNXRuntimeSegmentor, self).__init__() | |
| # get the custom op path | |
| ort_custom_op_path = '' | |
| try: | |
| from mmcv.ops import get_onnxruntime_op_path | |
| ort_custom_op_path = get_onnxruntime_op_path() | |
| except (ImportError, ModuleNotFoundError): | |
| warnings.warn('If input model has custom op from mmcv, \ | |
| you may have to build mmcv with ONNXRuntime from source.') | |
| session_options = ort.SessionOptions() | |
| # register custom op for onnxruntime | |
| if osp.exists(ort_custom_op_path): | |
| session_options.register_custom_ops_library(ort_custom_op_path) | |
| sess = ort.InferenceSession(onnx_file, session_options) | |
| providers = ['CPUExecutionProvider'] | |
| options = [{}] | |
| is_cuda_available = ort.get_device() == 'GPU' | |
| if is_cuda_available: | |
| providers.insert(0, 'CUDAExecutionProvider') | |
| options.insert(0, {'device_id': device_id}) | |
| sess.set_providers(providers, options) | |
| self.sess = sess | |
| self.device_id = device_id | |
| self.io_binding = sess.io_binding() | |
| self.output_names = [_.name for _ in sess.get_outputs()] | |
| for name in self.output_names: | |
| self.io_binding.bind_output(name) | |
| self.cfg = cfg | |
| self.test_mode = cfg.model.test_cfg.mode | |
| def extract_feat(self, imgs): | |
| raise NotImplementedError('This method is not implemented.') | |
| def encode_decode(self, img, img_metas): | |
| raise NotImplementedError('This method is not implemented.') | |
| def forward_train(self, imgs, img_metas, **kwargs): | |
| raise NotImplementedError('This method is not implemented.') | |
| def simple_test(self, img, img_meta, **kwargs): | |
| device_type = img.device.type | |
| self.io_binding.bind_input( | |
| name='input', | |
| device_type=device_type, | |
| device_id=self.device_id, | |
| element_type=np.float32, | |
| shape=img.shape, | |
| buffer_ptr=img.data_ptr()) | |
| self.sess.run_with_iobinding(self.io_binding) | |
| seg_pred = self.io_binding.copy_outputs_to_cpu()[0] | |
| # whole might support dynamic reshape | |
| ori_shape = img_meta[0]['ori_shape'] | |
| if not (ori_shape[0] == seg_pred.shape[-2] | |
| and ori_shape[1] == seg_pred.shape[-1]): | |
| seg_pred = torch.from_numpy(seg_pred).float() | |
| seg_pred = torch.nn.functional.interpolate( | |
| seg_pred, size=tuple(ori_shape[:2]), mode='nearest') | |
| seg_pred = seg_pred.long().detach().cpu().numpy() | |
| seg_pred = seg_pred[0] | |
| seg_pred = list(seg_pred) | |
| return seg_pred | |
| def aug_test(self, imgs, img_metas, **kwargs): | |
| raise NotImplementedError('This method is not implemented.') | |
| def parse_args(): | |
| parser = argparse.ArgumentParser( | |
| description='mmseg onnxruntime backend test (and eval) a model') | |
| parser.add_argument('config', help='test config file path') | |
| parser.add_argument('model', help='Input model file') | |
| parser.add_argument('--out', help='output result file in pickle format') | |
| parser.add_argument( | |
| '--format-only', | |
| action='store_true', | |
| help='Format the output results without perform evaluation. It is' | |
| 'useful when you want to format the result to a specific format and ' | |
| 'submit it to the test server') | |
| parser.add_argument( | |
| '--eval', | |
| type=str, | |
| nargs='+', | |
| help='evaluation metrics, which depends on the dataset, e.g., "mIoU"' | |
| ' for generic datasets, and "cityscapes" for Cityscapes') | |
| parser.add_argument('--show', action='store_true', help='show results') | |
| parser.add_argument( | |
| '--show-dir', help='directory where painted images will be saved') | |
| parser.add_argument( | |
| '--options', nargs='+', action=DictAction, help='custom options') | |
| parser.add_argument( | |
| '--eval-options', | |
| nargs='+', | |
| action=DictAction, | |
| help='custom options for evaluation') | |
| parser.add_argument( | |
| '--opacity', | |
| type=float, | |
| default=0.5, | |
| help='Opacity of painted segmentation map. In (0, 1] range.') | |
| parser.add_argument('--local_rank', type=int, default=0) | |
| args = parser.parse_args() | |
| if 'LOCAL_RANK' not in os.environ: | |
| os.environ['LOCAL_RANK'] = str(args.local_rank) | |
| return args | |
| def main(): | |
| args = parse_args() | |
| assert args.out or args.eval or args.format_only or args.show \ | |
| or args.show_dir, \ | |
| ('Please specify at least one operation (save/eval/format/show the ' | |
| 'results / save the results) with the argument "--out", "--eval"' | |
| ', "--format-only", "--show" or "--show-dir"') | |
| if args.eval and args.format_only: | |
| raise ValueError('--eval and --format_only cannot be both specified') | |
| if args.out is not None and not args.out.endswith(('.pkl', '.pickle')): | |
| raise ValueError('The output file must be a pkl file.') | |
| cfg = mmcv.Config.fromfile(args.config) | |
| if args.options is not None: | |
| cfg.merge_from_dict(args.options) | |
| cfg.model.pretrained = None | |
| cfg.data.test.test_mode = True | |
| # init distributed env first, since logger depends on the dist info. | |
| distributed = False | |
| # build the dataloader | |
| # TODO: support multiple images per gpu (only minor changes are needed) | |
| dataset = build_dataset(cfg.data.test) | |
| data_loader = build_dataloader( | |
| dataset, | |
| samples_per_gpu=1, | |
| workers_per_gpu=cfg.data.workers_per_gpu, | |
| dist=distributed, | |
| shuffle=False) | |
| # load onnx config and meta | |
| cfg.model.train_cfg = None | |
| model = ONNXRuntimeSegmentor(args.model, cfg=cfg, device_id=0) | |
| model.CLASSES = dataset.CLASSES | |
| model.PALETTE = dataset.PALETTE | |
| efficient_test = False | |
| if args.eval_options is not None: | |
| efficient_test = args.eval_options.get('efficient_test', False) | |
| model = MMDataParallel(model, device_ids=[0]) | |
| outputs = single_gpu_test(model, data_loader, args.show, args.show_dir, | |
| efficient_test, args.opacity) | |
| rank, _ = get_dist_info() | |
| if rank == 0: | |
| if args.out: | |
| print(f'\nwriting results to {args.out}') | |
| mmcv.dump(outputs, args.out) | |
| kwargs = {} if args.eval_options is None else args.eval_options | |
| if args.format_only: | |
| dataset.format_results(outputs, **kwargs) | |
| if args.eval: | |
| dataset.evaluate(outputs, args.eval, **kwargs) | |
| if __name__ == '__main__': | |
| main() | |