gradio_app / app.py
AnjaliSarawgi's picture
changes
e6ba862
"""
Gradio application for performing OCR on scanned Old Nepali documents.
This script is a Gradio port of a Streamlit application originally built
to visualize and edit OCR output. It loads a pre‑trained model for
sequence decoding, accepts an input image (and optional segmentation
XML in ALTO format), performs OCR on segmented lines, highlights tokens
with low confidence and offers downloads of both the raw text and per
token scores.
The heavy lifting functions (model loading, pre‑processing, inference
and highlighting) are adapted directly from the Streamlit version. The
UI has been simplified for Gradio: users upload an image and optional
XML file, choose preprocessing steps and a highlight metric, then run
OCR. The results are displayed alongside the overlaid segmentation
boxes and a table of token scores. An editable textbox lets users
modify the predicted text before downloading it.
To run this app locally, install gradio (`pip install gradio`) and
execute this script with Python:
python gradio_app.py
"""
import io
import os
import re
import base64
import unicodedata
import contextlib
import xml.etree.ElementTree as ET
from collections import defaultdict
from functools import lru_cache
import numpy as np
import pandas as pd
from PIL import Image, ImageDraw, ImageFont
import cv2
import torch
from transformers import (
VisionEncoderDecoderModel,
PreTrainedTokenizerFast,
TrOCRProcessor,
)
from matplotlib import cm
import gradio as gr
import tempfile
# ----------------------------------------------------------------------
# Configuration
#
# These constants control various aspects of the OCR pipeline. You can
# adjust them to trade off accuracy, performance or output volume.
# The maximum number of tokens to decode for a single line. If your
# documents typically have longer lines you can increase this value, but
# beware that very long sequences may cause more memory usage.
MAX_LEN: int = 128
# How many alternative tokens to keep when computing per–token statistics.
TOPK: int = 3
# If an XML segmentation file is provided, only process the first
# MAX_LINES lines. This prevents huge documents from consuming
# excessive resources.
MAX_LINES: int = 120
# Images are resized such that the longest side does not exceed this
# number of pixels before passing them to the OCR model. Increasing
# this value may improve accuracy at the cost of speed and memory.
RESIZE_MAX_SIDE: int = 800
# Threshold used when highlighting tokens by relative probability. A
# ratio of Top2/Top1 greater than this value will cause the token to
# be highlighted in red.
REL_PROB_TH: float = 0.70
# A regex used to clean up Unicode control characters before text
# normalization. Soft hyphens, zero width spaces and similar marks
# interfere with accurate token matching.
CLEANUP: re.Pattern = re.compile(r"[\u00AD\u200B\u200C\u200D]")
# Default font path for rendering predictions directly on the image.
FONT_PATH: str = os.path.join("NotoSansDevanagari-Regular.ttf")
# ----------------------------------------------------------------------
# Model loading
#
# Loading the model and associated tokenizer/processor is slow. Use
# functools.lru_cache to ensure this only happens once per process.
@lru_cache(maxsize=1)
def load_model():
"""Load the OCR model, tokenizer and feature extractor.
Returns
-------
model : VisionEncoderDecoderModel
The loaded model in evaluation mode.
tokenizer : PreTrainedTokenizerFast
Tokenizer corresponding to the decoder part of the model.
feature_extractor : callable
Feature extractor converting PIL images into model inputs.
device : torch.device
The device (CPU or CUDA) used for inference.
"""
model_path = "AnjaliSarawgi/model-oct"
# In an offline environment the HF token is None; if you wish
# to use a private model you can set HF_TOKEN in your environment.
hf_token = os.environ.get("HF_TOKEN")
model = VisionEncoderDecoderModel.from_pretrained(model_path, token=hf_token)
tokenizer = PreTrainedTokenizerFast.from_pretrained(model_path, token=hf_token)
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-large-handwritten", token=None)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device).eval()
return model, tokenizer, processor.feature_extractor, device
# ----------------------------------------------------------------------
# Utility functions
#
def clean_text(text: str) -> str:
"""Normalize and collapse whitespace from a decoded string.
Parameters
----------
text : str
The raw decoded string from the model.
Returns
-------
str
The cleaned string with Unicode normalization and whitespace
removed. All whitespace characters are stripped since the
predictions are later tokenized at the akshara (syllable) level.
"""
text = unicodedata.normalize("NFC", text)
text = CLEANUP.sub("", text)
return re.sub(r"\s+", "", text)
def prepare_image(image: Image.Image, max_side: int = RESIZE_MAX_SIDE) -> Image.Image:
"""Resize the image so that its longest side equals max_side.
Parameters
----------
image : PIL.Image
Input image.
max_side : int, optional
Maximum allowed size for the longest side of the image.
Returns
-------
PIL.Image
The resized image.
"""
img = image.convert("RGB")
w, h = img.size
if max(w, h) > max_side:
img.thumbnail((max_side, max_side), Image.LANCZOS)
return img
def get_amp_ctx():
"""Return the appropriate context manager for automatic mixed precision."""
return torch.cuda.amp.autocast if torch.cuda.is_available() else contextlib.nullcontext
# ----------------------------------------------------------------------
# XML parsing and segmentation
#
def parse_boxes_from_xml(xml_bytes: bytes, level: str = "line", image_size: tuple | None = None):
"""Parse ALTO or PAGE XML to extract bounding boxes.
Parameters
----------
xml_bytes : bytes
Raw XML bytes.
level : {"block", "line", "word"}, optional
The segmentation level to extract. For OCR we use "line".
image_size : tuple or None
If provided, image_size=(width, height) allows rescaling
coordinates to match the actual image. ALTO files often store
absolute page sizes that differ from the image dimensions.
Returns
-------
list of dict
Each dict represents a bounding box with keys:
- "bbox": [x1, y1, x2, y2]
- "points": list of (x, y) if polygonal coordinates exist
- "id": line identifier (string)
- "label": the type of element (e.g. TextLine)
"""
def _strip_ns(elem):
for e in elem.iter():
if isinstance(e.tag, str) and e.tag.startswith("{"):
e.tag = e.tag.split("}", 1)[1]
root = ET.parse(io.BytesIO(xml_bytes)).getroot()
_strip_ns(root)
boxes = []
# ALTO format handling
if root.tag.lower() == "alto":
tag_map = {"block": "TextBlock", "line": "TextLine", "word": "String"}
tag = tag_map.get(level, "TextLine")
page_el = root.find(".//Page")
page_w = page_h = None
if page_el is not None:
try:
page_w = float(page_el.get("WIDTH") or 0)
page_h = float(page_el.get("HEIGHT") or 0)
except Exception:
page_w = page_h = None
sx = sy = 1.0
if image_size and page_w and page_h:
img_w, img_h = image_size
sx = (img_w / page_w) if page_w else 1.0
sy = (img_h / page_h) if page_h else 1.0
for el in root.findall(f".//{tag}"):
poly = el.find(".//Shape/Polygon")
got_box = False
pts = None
if poly is not None and poly.get("POINTS"):
raw = poly.get("POINTS").strip()
tokens = re.split(r"[ ,]+", raw)
nums = []
for t in tokens:
try:
nums.append(float(t))
except Exception:
pass
pts = []
if len(nums) >= 6 and len(nums) % 2 == 0:
for i in range(0, len(nums), 2):
pts.append((nums[i] * sx, nums[i + 1] * sy))
if pts:
xs = [p[0] for p in pts]
ys = [p[1] for p in pts]
x1, x2 = int(min(xs)), int(max(xs))
y1, y2 = int(min(ys)), int(max(ys))
got_box = (x2 > x1 and y2 > y1)
if not got_box:
try:
hpos = float(el.get("HPOS", 0)) * sx
vpos = float(el.get("VPOS", 0)) * sy
width = float(el.get("WIDTH", 0)) * sx
height = float(el.get("HEIGHT", 0)) * sy
x1, y1 = int(hpos), int(vpos)
x2, y2 = int(hpos + width), int(vpos + height)
except Exception:
continue
if x2 <= x1 or y2 <= y1:
continue
label = tag if tag != "String" else (el.get("CONTENT") or "String")
boxes.append(
{
"label": label,
"bbox": [x1, y1, x2, y2],
"source": "alto",
"id": el.get("ID", ""),
**({"points": pts} if pts else {}),
}
)
return boxes
# PAGE XML handling
for region in root.findall(".//TextRegion"):
coords = region.find(".//Coords")
pts_attr = coords.get("points") if coords is not None else None
if not pts_attr:
continue
pts = []
for token in pts_attr.strip().split():
if "," in token:
xx, yy = token.split(",", 1)
try:
pts.append((float(xx), float(yy)))
except Exception:
pass
if not pts:
continue
xs = [p[0] for p in pts]
ys = [p[1] for p in pts]
x1, x2 = int(min(xs)), int(max(xs))
y1, y2 = int(min(ys)), int(max(ys))
if x2 > x1 and y2 > y1:
boxes.append(
{
"label": "TextRegion",
"bbox": [x1, y1, x2, y2],
"source": "page",
"id": region.get("id", ""),
}
)
if boxes:
return boxes
# Fallback: Pascal VOC
for obj in root.findall(".//object"):
bb = obj.find("bndbox")
if bb is None:
continue
try:
xmin = int(float(bb.findtext("xmin")))
ymin = int(float(bb.findtext("ymin")))
xmax = int(float(bb.findtext("xmax")))
ymax = int(float(bb.findtext("ymax")))
if xmax > xmin and ymax > ymin:
boxes.append(
{
"label": (obj.findtext("name") or "region").strip(),
"bbox": [xmin, ymin, xmax, ymax],
"source": "voc",
"id": obj.findtext("name") or "",
}
)
except Exception:
pass
return boxes
def sort_boxes_reading_order(boxes, y_tol: int = 10):
"""Sort bounding boxes top‑to‑bottom then left‑to‑right."""
def key(b):
x1, y1, x2, y2 = b["bbox"]
return (round(y1 / max(1, y_tol)), y1, x1)
return sorted(boxes, key=key)
def draw_boxes(img: Image.Image, boxes):
"""Overlay semi‑transparent red polygons or rectangles on an image.
Parameters
----------
img : PIL.Image
The base image.
boxes : list of dict
Segmentation boxes with either 'points' or 'bbox' keys.
Returns
-------
PIL.Image
An image with red overlays marking each box. Boxes are numbered
starting from 1.
"""
base = img.convert("RGBA")
overlay = Image.new("RGBA", base.size, (0, 0, 0, 0))
draw = ImageDraw.Draw(overlay)
thickness = max(3, min(base.size) // 200)
for i, b in enumerate(boxes, 1):
if "points" in b and b["points"]:
pts = [(int(x), int(y)) for x, y in b["points"]]
draw.polygon(pts, outline=(255, 0, 0, 255), fill=(255, 0, 0, 64))
xs = [p[0] for p in pts]
ys = [p[1] for p in pts]
x1, y1 = min(xs), min(ys)
else:
x1, y1, x2, y2 = map(int, b["bbox"])
draw.rectangle([x1, y1, x2, y2], outline=(255, 0, 0, 255), width=thickness, fill=(255, 0, 0, 64))
tag_w, tag_h = 40, 24
draw.rectangle([x1, y1, x1 + tag_w, y1 + tag_h], fill=(255, 0, 0, 190))
draw.text((x1 + 6, y1 + 4), str(i), fill=(255, 255, 255, 255))
return Image.alpha_composite(base, overlay).convert("RGB")
# ----------------------------------------------------------------------
# OCR inference per line
#
def predict_and_score_once(image: Image.Image, line_id: int = 1, topk: int = TOPK):
"""Run the model on a single cropped line and return predictions and scores.
This helper wraps the model.generate call to obtain per‑token
probabilities and derives a DataFrame summarizing each decoding step.
Parameters
----------
image : PIL.Image
Cropped segment to process.
line_id : int, optional
Identifier used in the output DataFrame.
topk : int, optional
Number of alternative tokens to keep for each decoding position.
Returns
-------
decoded_text : str
Cleaned predicted string for the line.
df : pandas.DataFrame
Table with one row per generated token containing the following
columns: line_id, seq_pos, token_id, token, confidence,
rel_prob, entropy, gap12, alt_tokens, alt_probs.
"""
model, tokenizer, feature_extractor, device = load_model()
img = prepare_image(image)
pixel_values = feature_extractor(images=img, return_tensors="pt").pixel_values.to(device)
amp_ctx = get_amp_ctx()
with torch.inference_mode(), amp_ctx():
try:
out = model.generate(
pixel_values,
max_length=100,
num_beams=1,
do_sample=False,
return_dict_in_generate=True,
output_scores=True,
use_cache=True,
eos_token_id=tokenizer.eos_token_id,
)
except RuntimeError as e:
# In case of GPU OOM, fall back to beam=1 without scores
if "out of memory" in str(e).lower():
out = model.generate(
pixel_values,
max_length=MAX_LEN,
num_beams=1,
do_sample=False,
return_dict_in_generate=True,
output_scores=False,
use_cache=True,
eos_token_id=tokenizer.eos_token_id,
)
else:
raise
seq = out.sequences[0]
decoded_text = clean_text(tokenizer.decode(seq, skip_special_tokens=True))
tokens_rows = []
# out.scores[i] gives logits for the i+1 token of seq
for step, (logits, tgt) in enumerate(zip(out.scores, seq[1:]), start=1):
probs = torch.softmax(logits[0].float().cpu(), dim=-1)
tgt_id = int(tgt.item())
conf = float(probs[tgt_id].item())
tk_vals, tk_idx = torch.topk(probs, k=min(topk, probs.shape[0]))
tk_idx = tk_idx.tolist()
tk_vals = tk_vals.tolist()
if tgt_id in tk_idx:
j = tk_idx.index(tgt_id)
tk_idx.pop(j)
tk_vals.pop(j)
alt_ids = [tgt_id] + tk_idx[: topk - 1]
alt_ps = [conf] + tk_vals[: topk - 1]
alt_tokens = [tokenizer.decode([i], skip_special_tokens=True) for i in alt_ids]
entropy = float((-probs * (probs.clamp_min(1e-12).log())).sum().item())
gap12 = float(alt_ps[0] - (alt_ps[1] if len(alt_ps) > 1 else 0.0))
rel_prob = float((alt_ps[1] / alt_ps[0]) if (len(alt_ps) > 1 and alt_ps[0] > 0) else 0.0)
tokens_rows.append(
{
"line_id": line_id,
"seq_pos": step,
"token_id": tgt_id,
"token": alt_tokens[0],
"confidence": conf,
"rel_prob": rel_prob,
"entropy": entropy,
"gap12": gap12,
"alt_tokens": "|".join(alt_tokens),
"alt_probs": "|".join([f"{p:.6f}" for p in alt_ps]),
}
)
del probs
df = pd.DataFrame(
tokens_rows,
columns=[
"line_id",
"seq_pos",
"token_id",
"token",
"confidence",
"rel_prob",
"entropy",
"gap12",
"alt_tokens",
"alt_probs",
],
)
return decoded_text, df
# ----------------------------------------------------------------------
# Text splitting into aksharas (syllable units) for highlighting
#
# The following regex and helper functions split a Devanagari string into
# aksharas. This is necessary to map model tokens back to spans of
# characters when highlighting uncertain predictions.
DEV_CONS = "\u0915-\u0939\u0958-\u095F\u0978-\u097F" # consonants incl. nukta variants range
INDEP_VOW = "\u0904-\u0914" # independent vowels
NUKTA = "\u093C" # nukta
VIRAMA = "\u094D" # halant/virama
MATRAS = "\u093A-\u094C" # dependent vowel signs
BINDUS = "\u0901\u0902\u0903" # chandrabindu, anusvara, visarga
AKSHARA_RE = re.compile(
rf"(?:"
rf"(?:[{DEV_CONS}]{NUKTA}?)(?:{VIRAMA}(?:[{DEV_CONS}]{NUKTA}?))*" # consonant cluster
rf"(?:[{MATRAS}])?" # optional matra
rf"(?:[{BINDUS}])?" # optional bindu/visarga
rf"|"
rf"(?:[{INDEP_VOW}](?:[{BINDUS}])?)" # independent vowel (+bindu)
rf")",
flags=re.UNICODE,
)
def split_aksharas(s: str):
"""Split a string into Devanagari aksharas and return spans."""
spans = []
i = 0
while i < len(s):
m = AKSHARA_RE.match(s, i)
if m and m.end() > i:
spans.append((m.start(), m.end()))
i = m.end()
else:
spans.append((i, i + 1))
i += 1
return [s[a:b] for (a, b) in spans], spans
def parse_alt_probs(s: str):
try:
return [float(x) for x in (s or "").split("|") if x != ""]
except Exception:
return []
def parse_alt_tokens(s: str):
return [(t if t is not None else "") for t in (s or "").split("|")]
def highlight_tokens_with_tooltips(
line_text: str, df_tok: pd.DataFrame, red_threshold: float, metric_column: str
) -> str:
"""Insert HTML spans around tokens whose chosen metric exceeds threshold.
The metric column can be "rel_prob" (relative probability) or
"entropy". Tokens with a value strictly greater than red_threshold
will be wrapped in a span with a tooltip listing alternative
predictions and their probabilities.
Parameters
----------
line_text : str
The cleaned line prediction.
df_tok : pandas.DataFrame
DataFrame of token statistics for the corresponding line.
red_threshold : float
Values above this threshold will be highlighted.
metric_column : str
Column name in df_tok used for thresholding.
Returns
-------
str
An HTML string with <span> elements inserted.
"""
aks, spans = split_aksharas(line_text)
joined = "".join(aks)
used_ranges = []
insertions = []
for _, row in df_tok.iterrows():
token = row.get("token", "").strip()
try:
val = float(row.get(metric_column, 0))
except Exception:
continue
if val <= red_threshold or not token:
continue
# Try finding the token in the joined akshara sequence
start_char_idx = joined.find(token)
if start_char_idx == -1:
continue
# Locate matching akshara span
ak_start = ak_end = None
cum_len = 0
for i, ak in enumerate(aks):
next_len = cum_len + len(ak)
if cum_len <= start_char_idx < next_len:
ak_start = i
if cum_len < start_char_idx + len(token) <= next_len:
ak_end = i + 1
break
cum_len = next_len
if ak_start is None or ak_end is None:
continue
# Avoid overlaps
if any(r[0] < ak_end and ak_start < r[1] for r in used_ranges):
continue
used_ranges.append((ak_start, ak_end))
# Character positions
char_start = spans[ak_start][0]
char_end = spans[ak_end - 1][1]
# Build tooltip content
alt_toks = row.get("alt_tokens", "").split("|")
alt_probs = row.get("alt_probs", "").split("|")
tooltip_lines = []
for t, p in zip(alt_toks, alt_probs):
try:
prob = float(p)
except Exception:
prob = 0.0
tooltip_lines.append(f"{_html_escape(t)}: {prob:.3f}")
tooltip = "\n".join(tooltip_lines)
token_str = _html_escape(line_text[char_start:char_end])
html_token = f"<span class='ocr-token' data-tooltip='{_html_escape(tooltip)}'>{token_str}</span>"
insertions.append((char_start, char_end, html_token))
if not insertions:
return _html_escape(line_text)
insertions.sort()
out_parts = []
last_idx = 0
for s, e, html_tok in insertions:
out_parts.append(_html_escape(line_text[last_idx:s]))
out_parts.append(html_tok)
last_idx = e
out_parts.append(_html_escape(line_text[last_idx:]))
return "".join(out_parts)
def _html_escape(s: str) -> str:
return (
s.replace("&", "&amp;")
.replace("<", "&lt;")
.replace(">", "&gt;")
.replace("\"", "&quot;")
.replace("'", "&#x27;")
)
# ----------------------------------------------------------------------
# Main OCR wrapper for Gradio
#
def run_ocr(
image: np.ndarray | None,
xml_file: tuple | None,
apply_gray: bool,
apply_bin: bool,
highlight_metric: str,
):
"""Run the OCR pipeline on user inputs and return results for Gradio.
Parameters
----------
image : numpy.ndarray or None
The uploaded image converted to a NumPy array by Gradio. If
None, the function returns empty results.
xml_file : tuple or None
A tuple representing the uploaded XML file as provided by
gr.File. The first element is the file name and the second is
bytes. If None, no segmentation is applied and the entire
image is processed as a single line.
apply_gray : bool
Whether to convert the image to grayscale before OCR.
apply_bin : bool
Whether to apply binarization (Otsu threshold) before OCR. If
selected, grayscale conversion is applied first automatically.
highlight_metric : str
Which metric to use for highlighting ("Relative Probability" or
"Entropy").
Returns
-------
overlay_img : PIL.Image or None
Image with segmentation boxes drawn. None if no input image.
predictions_html : str
HTML formatted predicted text with highlighted tokens.
df_scores : pandas.DataFrame or None
DataFrame of per‑token statistics. None if no input image.
txt_file_path : str or None
Path to a temporary .txt file containing the plain predicted text.
csv_file_path : str or None
Path to a temporary CSV file containing the extended token scores.
"""
if image is None:
return None, "", None, None, None
# Convert the numpy array to a PIL image
pil_img = Image.fromarray(image).convert("RGB")
# Apply preprocessing as requested
if apply_gray:
pil_img = pil_img.convert("L").convert("RGB")
if apply_bin:
img_cv = cv2.cvtColor(np.array(pil_img), cv2.COLOR_RGB2GRAY)
_, bin_img = cv2.threshold(img_cv, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
pil_img = Image.fromarray(bin_img).convert("RGB")
# Parse segmentation boxes if XML provided
boxes: list = []
if xml_file:
# Determine the correct way to extract bytes from the uploaded file.
xml_bytes = None
# If gr.File is configured with type="binary", xml_file will be raw bytes.
if isinstance(xml_file, (bytes, bytearray)):
xml_bytes = bytes(xml_file)
# When type="filepath", xml_file would be a str path.
elif isinstance(xml_file, str):
try:
with open(xml_file, "rb") as f:
xml_bytes = f.read()
except Exception:
xml_bytes = None
# If a temporary file object is passed in, read its contents.
elif hasattr(xml_file, "read"):
try:
xml_bytes = xml_file.read()
except Exception:
xml_bytes = None
# If xml_file is a dictionary from Gradio (not expected with type="binary"),
# attempt to extract the data key.
elif isinstance(xml_file, dict) and "data" in xml_file:
xml_bytes = xml_file.get("data")
if xml_bytes:
try:
boxes = parse_boxes_from_xml(xml_bytes, level="line", image_size=pil_img.size)
boxes = sort_boxes_reading_order(boxes)[:MAX_LINES]
except Exception:
boxes = []
# Run OCR for each segmented line or the whole image
dfs = []
concatenated_parts = []
line_text_by_id = {}
if boxes:
pad = 2
for idx, b in enumerate(boxes, 1):
# Create a tight crop around the line
if "points" in b:
pts = b["points"]
mask = Image.new("L", pil_img.size, 0)
ImageDraw.Draw(mask).polygon(pts, outline=1, fill=255)
seg_img = Image.new("RGB", pil_img.size, (255, 255, 255))
seg_img.paste(pil_img, mask=mask)
xs = [x for x, y in pts]
ys = [y for x, y in pts]
x1 = max(0, int(min(xs) - pad))
y1 = max(0, int(min(ys) - pad))
x2 = min(pil_img.width, int(max(xs) + pad))
y2 = min(pil_img.height, int(max(ys) + pad))
crop = seg_img.crop((x1, y1, x2, y2))
else:
x1, y1, x2, y2 = b["bbox"]
x1p = max(0, x1 - pad)
y1p = max(0, y1 - pad)
x2p = min(pil_img.width, x2 + pad)
y2p = min(pil_img.height, y2 + pad)
crop = pil_img.crop((x1p, y1p, x2p, y2p))
# Run inference on the crop
seg_text, df_tok = predict_and_score_once(crop, line_id=idx, topk=TOPK)
seg_text = clean_text(seg_text)
# Choose metric
if highlight_metric == "Relative Probability":
red_threshold = REL_PROB_TH
metric_col = "rel_prob"
else:
red_threshold = 0.10 # heuristic threshold for entropy
metric_col = "entropy"
# Highlight uncertain tokens
seg_text_flagged = highlight_tokens_with_tooltips(seg_text, df_tok, red_threshold, metric_col)
concatenated_parts.append(seg_text_flagged)
df_tok["line_id"] = idx
dfs.append(df_tok)
line_text_by_id[idx] = seg_text_flagged
predicted_html = "<br>".join(concatenated_parts).strip()
df_all = pd.concat(dfs, ignore_index=True)
else:
# Single pass on the whole image
seg_text, df_all = predict_and_score_once(pil_img, line_id=1, topk=TOPK)
seg_text = clean_text(seg_text)
if highlight_metric == "Relative Probability":
red_threshold = REL_PROB_TH
metric_col = "rel_prob"
else:
red_threshold = 0.10
metric_col = "entropy"
seg_text_flagged = highlight_tokens_with_tooltips(seg_text, df_all, red_threshold, metric_col)
predicted_html = seg_text_flagged
line_text_by_id[1] = seg_text_flagged
# Draw overlay image
overlay_img = draw_boxes(pil_img, boxes) if boxes else pil_img
# Create downloads
df_all = df_all.copy()
# Drop the last empty token per line to tidy up output
df_all.sort_values(["line_id", "seq_pos"], inplace=True)
to_drop = []
for line_id, group in df_all.groupby("line_id"):
if group.iloc[-1]["token"].strip() == "":
to_drop.append(group.index[-1])
df_all = df_all.drop(index=to_drop)
# Prepare plain text by stripping HTML tags and replacing <br>
plain_text = re.sub(r"<[^>]*>", "", predicted_html.replace("<br>", "\n"))
# Write temporary files
# return overlay_img, predicted_html
# Save plain text to a temporary .txt file
txt_dir = tempfile.gettempdir()
txt_path = os.path.join(txt_dir, "predictions.txt")
with open(txt_path, "w", encoding="utf-8") as f:
f.write(plain_text)
return overlay_img, predicted_html, txt_path
# ----------------------------------------------------------------------
# Build Gradio Interface
#
def create_gradio_interface():
"""Create and return the Gradio Blocks interface."""
with gr.Blocks(title="Handwritten Text Recognition (Old Nepali)") as demo:
gr.Markdown("""# Handwritten Text Recognition (Old Nepali) \n\nUpload an image and (optionally) a segmentation XML file. Then click **Run OCR** to extract the text.""")
gr.HTML("""
<style>
#prediction-box {
border: 1px solid #ccc;
padding: 16px;
border-radius: 8px;
background-color: #f9f9f9;
font-size: 18px;
line-height: 1.6;
min-height: 100px;
}
}
</style>
""")
with gr.Row():
image_input = gr.Image(type="numpy", label="Upload Image")
# When used as an input, gr.File returns either a file path or bytes
# depending on the `type` parameter. By setting type="binary" we
# ensure that the XML content is passed directly as bytes to the
# callback, avoiding the need to reopen a temporary file.
xml_input = gr.File(
label="Upload segmentation XML (optional)",
file_count="single",
type="binary",
file_types=[".xml"],
)
# with gr.Row():
# apply_gray_checkbox = gr.Checkbox(label="Convert to Grayscale", value=False)
# apply_bin_checkbox = gr.Checkbox(label="Binarize", value=False)
# metric_radio = gr.Radio([
# "Relative Probability",
# "Entropy",
# ], label="Highlight tokens by", value="Relative Probability")
run_btn = gr.Button("Run OCR")
# Outputs
# overlay_output = gr.Image(label="Detected Regions")
# # predictions_output = gr.HTML(label="Predictions (HTML)")
# predictions_output = gr.HTML(
# label="Predictions (HTML)",
# elem_id="prediction-box"
# )
# df_output = gr.DataFrame(label="Token Scores", interactive=False)
with gr.Row():
with gr.Column(scale=2):
overlay_output = gr.Image(label="Detected Regions")
with gr.Column(scale=2):
predictions_output = gr.HTML(
label="Predictions (HTML)",
elem_id="prediction-box"
)
# df_output = gr.DataFrame(label="Token Scores", interactive=False)
# txt_file_output = gr.File(label="Download OCR Prediction (.txt)")
# csv_file_output = gr.File(label="Download Token Scores (.csv)")
# Editable text
edited_text = gr.Textbox(
label="Edit full predicted text", lines=8, interactive=True
)
# download_edited_btn = gr.Button("Download edited text")
txt_file_output = gr.File(label="Download OCR Prediction (.txt)")
# Callback for OCR
def on_run(image, xml):
return run_ocr(image, xml, False, False, "Relative Probability")
run_btn.click(
fn=on_run,
# inputs=[image_input, xml_input, apply_gray_checkbox, apply_bin_checkbox, metric_radio],
inputs=[image_input, xml_input],
outputs=[overlay_output, predictions_output, txt_file_output],
)
# Populate editable text with plain text from predictions
def update_edited_text(pred_html):
plain = re.sub(r"<[^>]*>", "", (pred_html or "").replace("<br>", "\n"))
return plain
predictions_output.change(
fn=update_edited_text,
inputs=predictions_output,
outputs=edited_text,
)
return demo
if __name__ == "__main__":
# Create and launch the Gradio interface
iface = create_gradio_interface()
iface.launch()